What Governments Maximize and Why: The View from Trade

Kishore Gawande* Texas A&M University

Pravin Krishna Johns Hopkins University and NBER

> Marcelo Olarreaga The World Bank

> > Abstract

What Governments Maximize and Why: The View from Trade

Abstract

Policy making power enables governments to redistribute income to powerful interests in society. However, some governments exhibit greater concern for aggregate welfare than others. This government behavior may itself be endogenously determined by a number of economic, political and institutional factors. Trade policy, being fundamentally redistributive, provides a valuable context in which the welfare mindedness of governments may be empirically evaluated. This paper investigates quantitatively the welfare mindedness of governments and attempts to understand these political and institutional determinants of the di erences in government behavior across countries.

Keywords: & , ()3(?)-373. Ω 4.9282 . -3194 3 357.41 , 357.41

1. Introduction

 p?
 p. fi
 p. & f
 ? ?

 .
 .
 .
 .
 ? ?

 .
 .
 .
 .
 ? ?

 .
 .
 .
 .
 ? ?

 .
 .
 .
 ?
 .
 ? ?

 .
 .
 .
 .
 ?
 .
 ?

 .
 .
 .
 .
 ?
 .
 ?

 .
 .
 .
 .
 .
 ?
 .

 ?
 .
 .
 .
 .
 ?
 .

 ?
 .
 .
 .
 ?
 .
 ?

 ?
 .
 .
 .
 .
 ?
 ?

 ?
 .
 .
 .
 .
 ?
 ?

 ?
 .
 .
 .
 .
 ?
 ?
 ?

 8
 ?
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</t

. p. . f. ? . &-, f. ? . p? &&? f? ? p. . pp fpp2 f, f fi . г р 2 р8-7 р '**??f**f. р?.fр?. ??fр?. ?f, f, . <u>s</u>, <u>f</u>-. -p &∛ , . ? f, ??? p f & (???),. f) p8 ? $(8 \cdot$ £. ? . . ? f

2. What Governments Maximize: Theory

$$U = c_0 + \sum_{i=1}^{n} u_i(c_i),$$
(1)

$$W = l + \sum_{i=1}^{n} \pi_i(p_i) + \sum_{i=1}^{n} t_i^s M_i(p_i) + \sum_{i=1}^{n} s_i(p_i)$$

3. What Governments Maximize: Comparative estimates of a

& (8) & p & f & - ff p & a. (8).

$$\frac{t_i}{1+t_i} \cdot e_i \cdot \frac{M_i}{X_i} = \frac{1}{a} \qquad i = 1, \dots, n.$$
(9)

 ff
 (?
 p
)
 ?
 28 3 &
 1988-2000 p
 .7

 ?
 ?
 ...
 ?
 ...
 ?
 ...
 ...
 ?
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...<

 A
 p
 f
 8
 f
 8
 .
 ?
 p
 8
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 \$\$
 <

4.1 Lobbying and Electoral Competition

4. , ?, ?-p р : А8 -(1987), (1994), (1994), (1996), \mathbf{p} ? (1996), \mathbf{p} ? (1996)
 ?
 f
 p
 p

 .
 .
 .
 .

 ?
 .
 .
 .
 Sep . . 2 8 f ц р, $\mathbf{p}\mathbf{8}$ р.д. 7.8.7 д. 8.11 - 7. 8.11 - 8.5 д. 5. 4. - 7. 8.11 - 8.5 д. - 7. ?, , , ? f 2 2 ар р 8 , 2 ър (?f [196).

 196
 ,
 ?
 f
 ,
 f
 ?
 f
 ?
 f
 ?
 f
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?

Ар? ? f& fa f& & & f p f & p & (5), ? p?

 Hypothesis 1: A
 f
 p ?
 p p

 f
 ?
 a'.

f? α f& f . A? p f W (11) (12) $, \qquad \qquad ? \qquad , a
ightarrow 0 \quad lpha
ightarrow 1. \qquad \&$? 2 2 f f p ? $8p ? . . <math>\alpha ? . . p$ $\mathbf{p} \quad \mathbf{A} \mathbf{p} \quad \mathbf{p} \quad A, ? \quad ?$, ff , ? 8 f p B (7 7 7 8 8 f 2 р. р.). &, р. ? ... ff ...? ... & & **f f** . . . , (12) W_i ? $8 t_i^*$. $p p f \delta f \alpha,$, f (p fi) i,8 f , Đ (12). ? p ? :

Hypothesis 2: \mathfrak{p} \mathfrak{p} \mathfrak{f} \mathfrak{p} \mathfrak{p} \mathfrak{f} \mathfrak{p} \mathfrak{p} <

 Hypothesis 3:
 p
 ff
 ff
 ff
 ff
 ff

 p
 .f
 ,
 .a,
 ?
 .
 ?
 ?
 ?
 .

,? p 8? f? p t f

fp&? p & & ? f p & & a.A.?f.&f &&a ?p fp & f? ??...?

? ₹, 2 $\mathbf{8}$ Ð Ð ? f ? Ð ? ?" ? 2). Ð Ð 2 2 $\mathbf{8}$ Ð Ð Ð 2 Ð Ð

Lobbies

2 87 2 $\frac{8}{2}$ 8рр 2) ? ? \mathbf{fi} ($\mathbf{8}$ 2. ? p f ? 8 8 f . A 2 ? ? 2 8 $8 \cdot$ f .17 2 2 ? 8 Ð / &

ś., ? f Ð. _ Ŷр 2 28 $\mathbf{8}$ ₽₹ , , ? . ff ? 2 2, 2 fl& Ð f .

Checks and Balances

	?				, ъ		ъ.?		8	fl&	? p ?
	, L	natior	nal	, , , р	· L	Ģ J	₹р.	f ?	_f	p?fi?	f
	f	ф	?	.18	8	8	₽?t	fi	_f	8	,
		_f	8			₹.	?	, ,	778	. D D	₹ ₽
		,		i.	k.			4 4.	,	. 1).
f	f	2	i.	L.	, <i>if</i>		3 р	,	p f		i
	8	& . ¹⁹									

 17 The model may be extended to incorporate the two-party electoral competition model in determining the legislator chosen to represent a district. Then, the diversity across districts in the parameters α , $\$, $\$, and ϕ then underlies each legislator's parameter. This may well determine which legislators are in the winning coalition (that is, which are the cheapest for the agenda setter to buy o), but the fact still remains that competition among legislators will lead to the same policy.

¹⁸The legislative bargaining game now has two additional steps added to the front of the earlier sequence: xxx

¹⁹Persson, Roland and Tabellini (1997) give deeper meaning to what it means for the executive to wield checks and balances. Their mechanism is separation of powers. Further, separation of powers works to produce welfare-oriented

Hypothesis 5: ? Đ Đ , ? ? .f Đ Đ ? Đ .f .

& fi p .²²

		I	ι.								
	f	₹.₹.	р. ~ Г	7			1(8).	7(.	Ð
?	. 75%	f).	ţ	?	i.	8.	?	ï	& (?	=2)

 p p8
 p
 8
 ? p
 p
 ?
 p
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?</t

$$f = \frac{1}{2} \frac{1}{2}$$

р & f ? p p & & & () p & f , & p f ? p & & f ? f

. œ (**___**₽ 7), & ₽?fi? &? f? ? . & . . & fi p, & . fi , , ? Ð **8** 1, . 8 78. **F** 78. **F** Ð 2 8 1 f Ð `**L**_A`~ **v** · · · · · , 8 0. р&р, &?, &р L, & & ? f & & f . f ?, p ? ? 8 8 2 f , .f 🗳 -0.50. . 8 f

5.2: Results

 1 p
 ? p
 ? f
 & ? f
 p ffif
 ?

 .?
 p
 ...
 & f
 ...
 a'.
 & ?.

 .?
 p
 ...
 ...
 f
 ...
 ...
 ?.

 .?
 ...
 fi
 ...
 ...
 ...
 ...
 ...
 ...

 .?
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 .?
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 .?
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 .?
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 .?
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 A & f
 p & p
 p p p f p f p f p f p f q f f q f

 Φ , Φ , Φ , Φ , f δ . 37.8 (**J** р.). , р, а 404.0 f р 8-

 p - (1965)
 i i a' f

 & p p a' f i

 & p p f f i

 & p p f i i

 & p p f i i

 & fa i p i i
 . р. - (1965) \mathbf{p} . . $\mathbf{f} a$. . 8 Ð f . (a) . fi . , . & , つ ず _f Ľ fi ? & & p ? , ? p · p · r_ f . . & fi . & ъ.

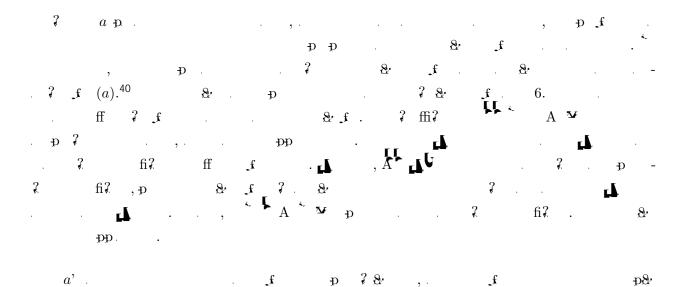
 В. р.р.
 В.р.8.
 В.?.
 р.?.
 р.?.
 д.?.

 fi
 ???
 fl8?
 ?.f.
 ?.f.
 ?.f.

 p.p.
 ?
 fl8?
 .p.
 ?.f.

 ?.ff?
 ?
 fl9.
 8
 .p.
 ?.f.

 ?.ff?
 ?
 p.p.
 p.p.
 .f.


 $\mathbf{L} = 1, 2 \qquad 8 \quad \mathbf{f} \quad \mathbf{28} \qquad \mathbf{78} \qquad \mathbf{8} \quad \mathbf{f} \quad \mathbf{28} \qquad \mathbf{78} \qquad \mathbf{8} \quad \mathbf{6} \quad \mathbf{78} \qquad \mathbf{78} \qquad \mathbf{8} \quad \mathbf{6} \quad \mathbf{78} \qquad \mathbf{78} \qquad \mathbf{8} \quad \mathbf{6} \quad \mathbf{78} \qquad \mathbf{78} \qquad \mathbf{7$

 f
 ?8
 8
 f?
 ?
 p
 f?
 p
 p
 p
 p
 p
 f
 ?
 p
 f?
 p
 p
 f8
 ?
 p
 p
 f8
 ?
 f8
 ?
 f8
 ?
 f8
 ?
 f8
 ?
 f8
 ?
 f7
 p
 f7
 f7
 p
 f7
 p

ар A & f Ð $\mathbf{8}$ $\mathbf{8}$ $\frac{8}{2}$ 2.2 _f fl& 2 ? 3 р $\mathbf{8}$ -f ? ffi? ? ? fl& ? ? ffi? $\mathbf{8}$ f Ð Ð . 2. $\mathbf{8}$ f Ð **_f**. Ð 2 87, ? ffi? . A . 8 f f Ŀ 2 р? fl& ? 8 А А a,f f ? V 8 a.А Ð Ð Ð 2 2 fl& 8 f , 2 fi? 8 2.fl82 fi?? ffi? ъ? , 8. .

Sensitivity Analysis

87? Ð 8 f f $\mathbf{8}$ f.) **f** 2 & f . A $\mathbf{8}$ (f (a)Ð 7 f & f) $\mathbf{8}$ Ð (Ð $\mathbf{8}$ f & $\mathbf{8}$ $\mathbf{8}$, 22 ? , $\mathbf{8}$ **8**∕₽ $\mathbf{8}$ $\mathbf{8}$. $\underline{8}$ 5.Ð

 $^{^{40}} The standard errors of ln() were computed using the delta method. Note that the heteroskedastic regression presumes that the only source of error is the measurement error in ln().$

· · •

i i	$(70).^{42}$?	87	Ð	_f	8	•	fi	,	V	А	8	,	f
۱.	any	!												

A Rawlsian Extension

& f , ?	8	· ?	f .	8
fp?	- p8 ?	.f ? :	8 p ?	¥.
2 8	f	f , p ?	? \$	
?	₹. (.	1985;	2002; ?	p ?
81).	? ,	Đ, , ,	i.
f.	?р	8. ? ,	8	2

, A2 ff ? f ? & ,

References

A , . 1963. Social C	Choice and Inc	lividual Valı	ues.	⊻	ſ			
A& 1987. Public Choice 54: 123- 1		&p, p	,	8.	, 、		?	",
, 1985. Th	ne Political Eco	onomy of U	S Import 1	Policy.	,	A:	~	
, ," Public Cho			₹_£	. ?				7
, American Economic Rev				. ? .	¢ 2.	,	ŗ	"
, 1994. Political Science Review			Ĺ,f	ŀ	f	"	, Ame.	rican
,, . <i>Review</i> 83: 1181-1206.	, J . A. 1989	9	Ļ	8.	" America	n Politi	ical Sc.	ience
· · · · · · · · ·	, J. A. 1987	, • · · ·	A	ĸ	Ļ	Ň	&·".	The

American Economic Review, Papers and Proceedings77: 303-309.

Ð

Survival. , A:

 & , . . . , 2005.
 ?
 & ? : A ₽ ?

 ." Review of Economics and Statistics 87: 59-72

, . (.), 2001. p. p.? . № : f. U . ?.

850.

of Economic Studies 63: 265-286.

, "	•••	. &	, 2005.			?	2.2.	i.	2
	Ð	8	. International	Organization 59(1)): 15	7-193.			
· , ·,	1999.		L a	· ·	8	°, ₹	: A	- &	
f	₹		," American	Economic Review	89: 1	1116-113	34.		
			r						

, ., 1999. А. . American Political Science Review 93 (3): 591-608. 2. ? : А р?

, ., 1995. ? ? : , , -, & ? , & эр ." British Journal of Political Science 25(3): 289-325.

World Development Indicators. & & . , :

Table 1.1: Estimates of a									
•	Country	ccode	1/a	se(1/a)	а				
1	Argentina	ARG	0.19	0.02	5.25				
2	Austria	AUS	0.11	0.01	8.79				
3	Bangladesh	BGD	6.34	2.27	0.16				
4	Bolivia	BOL	1.47	0.20	0.68				
5	Brazil	BRA	0.04	0.00	24.91				
6	Chile	CHL	0.21	0.02	4.83				
7	China	CHN	0.12	0.01	8.33				
8	Cameroon	CMR	3.31	2.54	0.30				
9	Colombia	COL	0.13	0.01	7.88				
10	Costa Rica	CRI	0.50	0.07	1.98				
11	Germany	DEU	0.09	0.01	11.55				
12	Denmark	DNK	0.12	0.01	8.10				
13	Ecuador	ECU	0.81	0.14	1.23				
14	Egypt	EGY	0.80	0.18	1.24				
15	Spain	ESP	0.07	0.00	15.16				
16	Ethiopia	ETH	5.92	2.26	0.17				
17	Finland	FIN	0.09	0.01	10.57				
18	France	FRA	0.09	0.01	10.96				
19	U.K.	GBR	0.08	0.01	11.86				
20	21								
	Guatemala	GTM	0.65	0.08	1.53				
22	Hongkong	HKG	0.00		inf.				
23	Hungary	HUN	0.25	0.02	3.96				
24	Indonesia	IDN	0.38	0.09	2.62				
25	India	IND	0.37	0.05	2.72				
26	Ireland	IRL	0.29	0.04	3.50				
27	Italy	ITA	0.07	0.01	13.42				
28	Japan	JPN	0.03	0.00	37.81				
29	Kenya	KEN	1.16	0.33	0.86				
30	Korea	KOR	0.06	0.00	16.15				
31	Sri Lanka	LKA	1.08	0.18	0.93				
32	Latvia	LVA	0.17	0.01	5.75				
33	Morocco	MAR	0.87	0.14	1.14				
34	Mexico	MEX	0.77	0.07	1.29				
35	Malawi	MWI	3.93	1.17	0.25				
36	Malaysia	MYS	0.32	0.02	3.13				
37	Netherlands	NLD	0.35	0.05	2.85				
38	Norway	NOR	0.24	0.05	4.22				
39	Nepal	NPL	15.56	5.66	0.06				
40	Pakistan	РАК	1.35	0.31	0.74				

Country	ccode	1/a	se(1/a)	a
41 Peru	PER	0.21	0.03	4.85
42 Phillipines	PHL	0.35	0.03	2.84
43 Poland	POL	0.13	0.01	7.48
44 Romania	ROM	0.11	0.01	9.25
45 Singapore	SGP	0.00	0.00	404.29
46 Sweden	SWE	0.08	0.03	12.28
47 Thailand	THA	0.94	0.17	1.06
48 Trinidad and Tobago	TTO	0.90	0.16	1.11
49 Turkey	TUR	0.07	0.00	14.53
50 Taiwan	TWN	0.12	0.01	8.53
51 Uruguay	URY	0.28	0.02	3.62
52 United States	USA	0.04	0.01	26.14
53 Venezuela	VEN	0.18	0.01	5.41
54 South Africa	ZAF	0.19	0.02	5.13
Notes:				

1. Hong Kong has zero tariffs. In the runs with 54 obs. (full sample) HKG's *a* is set to 10000.

Nepal	0.06	Thailand	1.06	Indonesia	2.62	Greece	5.11	Finland	10.57
Bangladesh	0.16	Trinidad and Tobago	1.11	India	2.72	South Africa	5.13	France	10.96
Ethiopia	0.17	Morocco	1.14	Phillipines	2.84	Argentina	5.25	Germany	11.55
Malawi	0.25	Ecuador	1.23	Netherlands	2.85	Venezuela	5.41	U.K.	11.86
Cameroon	0.30	Egypt	1.24	Malaysia	3.13	Latvia	5.75	Sweden	12.28
Bolivia	0.68	Mexico	1.29	Ireland	3.50	Poland	7.48	Italy	13.42
Pakistan	0.74	Guatemala	1.53	Uruguay	3.62	Colombia	7.88	Turkey	14.53
Kenya	0.86	Costa Rica	1.98	Hungary	3.96	Denmark	8.10	Spain	15.16

Source	Variable	Description	Mean	sd	Min	Max
Estimated	ln(a)	log of a	1.313	1.515	2.813	6.002
WDR	PROPORTIONAL	1 if House seats allocated on a proportional basis; 0 if allocated on plurality (first	-			
		past-the-post winner) basis	0.520	0.505	0	1
WDR	LEGCOHESION	Cohesion among parties in the legislature that form the government = Herfindahl	_			
		index of # parties in government. Herfindahl index of #parties in opposition	0.232	0.274	0.554	0.989
WDR	PROP+LEGCOHESION	PROPORTIONAL x LEGCOHESION	0.096	0.218	0.554	0.572
WDR	PLUR+LEGCOHESION	(1 PROPORTIONAL) x LEGCOHESION	0.137	0.234	0.036	0.989
WDR	ILLITERACY	% of population with no primary education with less than secondary (xx)				
		school education	0.134	0.183	0	0.630
WDR	URBANIZATION	% of population living in urban area	0.617	0.225	0.111	1
DPI	LRDIVIDE	1 if largest government party in legislature is ideologically different (leftist or				
		rightist) from the largest opposition party. 0 otherwise.	0.360	0.485	0	1
WAT	TVADVERTISING_GDP	Inverse productivity of advertising spending				
		= \$ of Television advertising expenditures per thousand \$ of GDP	2.106	1.608	0.003	6.867
DPI	CHECKS	Executive checks on the legislature	4.000	2.195	1	15
DPI	BinaryCHECKS	Binary measure of executive checks on the legislature: 1 if CHECKS>7,				
		0 otherwise.	0.040	0.198	0	1
DPI	EIEC	Executive index of electoral competitiveness	6.740	1.006	2	7
DPI	BinaryEIEC	Binary measure of executive electoral competitiveness: 1 if EIEC=7, 0 otherwise	0.900	0.303	0	1
DPI	ALLHOUSE	Undivided government: 1 if party of executive has majority in the legislature,				
		0 otherwise	0.460	0.503	0	1
DPI	ESIMILARITY	Ideologically similarity of executive and largest party in government: 1 if both an	е			
		Leftist, Rightist or Centrist, 0 otherwise	0.800	0.404	0	1

Table 2: Variable Description and Descriptive Statistics

Notes:

1. All statistics for 50 countries. Only countires with elected legislatures up to 1996 in the sample. China, Ethiopia, Hong Kong and Taiwan are dropped.

2. DPI refers to Database on Political Institutions (Keefer et al 2001), WDR to various issues of the World Development Report, and WAT to World Advertising Trends (1998).

3. See Section 5.1 for detailed definitions and original sources.

Theory	Variable	OLS1	OLS2
EC: Proportonal versus plurality	PROPORTIONAL	0.01	0.03
EC: Proportonal versus plurality	PROP+LEGCOHESION	0.21	0.14
EC: Proportonal versus plurality	PLUR+LEGCOHESION	0.21	0.05

	M1	M2
PROPORTIONAL	0.052	0.172
	[0.14]	[0.48]
PROP+LEGCOHESION	1.314	0.968
	[1.83]*	[1.41]
PLUR+LEGCOHESION	1.299	0.375
	[1.63]	[0.49]
ILLITERACY	3.299	4.045
	[2.75]***	[3.36]***
URBANIZATION	3.257	3.182
	[3.15]***	[3.28]***
LRDIVIDE	0.656	0.689
	[1.81]*	[1.98]*
TVADVERTISING_GDP	0.17	0.19
	[1.38]	[1.61]
CHECKS	0.152	
	[1.96]*	
BinaryCHECKS		1.927
, ,		[2.43]**
EIEC	0.328	
	[2.17]**	
BinaryEIEC		1.534
		[3.30]***
ALLHOUSE	0.276	0.28
	[0.76]	[0.87]
ESIMILARITY	0.228	0.503
	[0.64]	[1.45]
Constant	0.788	0.706
	[0.59]	[0.77]
N	<u>[0.00]</u> 50	50
Adjusted R2	0.69	0.75
-,	0.00	0.10

 Table 5: Robust (to Outliers) regressions

 Dependent variable: In(a)

Note:

1. Absolute *t*-statistics in parentheses:

* denotes staticial significance at 10%; ** at 5%, and *** at 1%.

2. Weighted regressions, with weights inversely related to residuals.

	M1	M2	M1	M2
PROPORTIONAL	0.037	0.102	0.01	0.032
	[0.11]	[0.31]	[0.03]	[0.11]
PROP+LEGCOHESION	1.46	0.99	0.941	0.522
	[2.16]**	[1.60]	[1.47]	[1.01]
PLUR+LEGCOHESION	1.376	0.338	1.448	1.039
	[1.84]*	[0.49]	[1.39]	[1.21]
ILLITERACY	2.759	3.665	1.903	1.824
	[2.44]**	[3.37]***	[1.24]	[1.39]
URBANIZATION	3.821	3.175	2.961	1.619
	[3.93]***	[3.62]***	[2.45]**	[1.57]
LRDIVIDE	0.746	0.688	0.418	0.38
	[2.18]**	[2.19]**	[1.57]	[1.89]*
TVADVERTISING_GDP	0.214	0.211	0.183	0.229
	[1.84]*	[1.98]*	[1.93]*	[3.00]***
CHECKS	0.153		0.015	
	[2.10]**		[0.17]	
BinaryCHECKS		1.809		1.457
		[2.52]**		[0.98]
EIEC	0.368		0.86	
	[2.58]**		[2.66]**	
BinaryEIEC		1.576		2.128
		[3.75]***		[5.38]***
ALLHOUSE	0.296	0.369	0.651	0.708
	[0.86]	[1.27]	[2.58]**	[3.52]***
ESIMILARITY	0.326	0.496	0.928	1.072
	[0.97]	[1.58]	[2.75]***	[3.92]***
Constant	0.537	0.68	5.04	1.887
	[0.43]	[0.82]	[1.99]*	[2.14]**
N	50	50	50	50
Adjusted R2	0.67	0.72	0.53	0.69
Note:				

Note:

1. Absolute *t*-statistics in parentheses:

* denotes staticial significance at 10%; ** at 5%, and *** at 1%.
2. First two columns are OLS estimates from Table 3.

	TYPE A Robustness					
Variable	Robust bounds exist?				Influential regressors	ROBUST?
PROPORTIONAL	NO	high	0.173		ILLITERACY	No
		base	0.037	0.110		
		low	0.634	1.068		
ILLITERACY	YES	high	1.963	1.647	none	Robust
	All combinations	base	2.759	2.440		
		low	6.962	6.296		
URBANIZATION	YES	high	6.311	8.555	none	Robust
	All combinations	base	3.821	3.930		
		low	2.692	2.899		
LRDIVIDE	YES	high	0.435	0.811	ILLITERACY,	Robust
	3 or 4 variable combos	base	0.746	2.180	URBANIZATION	
		low	0.818	2.155		
TVADVERTISING_GDP	YES	high	0.685	6.164	none	Robust
	All combinations	base	0.214	1.840		
		low	0.204	1.646		
CHECKS	YES	high	0.176	2.696	ILLITERACY,	No
	3 or 4 variable combos	base	0.153	2.100	URBANIZATION	
		low	0.092	0.763		
BinaryCHECKS	YES	high	2.152	2.468		No
	2, 3 or 4 variable combos	base	1.809	2.520	TVADVERTISING_GDP	
		low	0.971	0.766		
EIEC	YES	high	0.037	0.153	ILLITERACY,	No
	2, 3 or 4 variable combos	base	0.368	2.580	URBANIZATION,	
		low	0.374	2.335	TVADVERTISING_GDP	
BinaryEIEC	YES	high	0.856	1.098		Robust, but
	All combinations	base	1.576	3.750		weakly
		low	1.767	3.287		
ALLHOUSE	NO	high	0.074	0.195	ILLITERACY,	No
		base	0.296	0.860	URBANIZATION	
		low	0.650	1.162		
ESIMILARITY	NO	high	0.537	1.496	ILLITERACY,	No
		base	0.326	0.970	TVADVERTISING_GDP	
		low	0.176	0.462		

Note:

1. The base estimates are from the first column of OLS estimates (BEIEC and BCHECKS from the second) of Table 3.

2. The "high" and "low" values are estimated as the max and min of the set of estimates using all possible combinations

country ccode a a^{R1}

Hypothesis	Variable						
EC: Proportonal versus plurality	PROPORTIONAL	0.037	0.102	1.156	0.44	0.253	0.276
		[0.11]	[0.31]	[0.45]	[0.18]	[0.76]	[0.88]
EC: Proportonal versus plurality	PROP+LEGCOHESION	1.46	0.99	1.188	-0.718	-0.374	-0.306
		[2.16]**	[1.60]	[0.24]	[0.15]	[0.59]	[0.51]
EC: Proportonal versus plurality	PLUR+LEGCOHESION	1.376	0.338	2.167	-1.635	-0.316	-0.134
		[1.84]*	[0.49]	[0.40]	[0.31]	[0.45]	[0.20]
EC: Uninformed voting	ILLITERACY	2.759	3.665	34.012	26.531	1.352	1.387
		[2.44]**	[3.37]***		[3.23]***	[1.28]	[1.33]
EC: Uninformed voting	URBANIZATION	3.821	3.175	-5.015	-8.993	-1.689	<mark>-1.649</mark>
			[3.62]***	[0.72]	[1.36]	[1.86]*	[1.96]*
EC: Ideological attachment to party	LRDIVIDE	0.746	0.688	0.292	1.315	0.215	0.268
		[2.18]**	[2.19]**	[0.12]	[0.55]	[0.67]	[0.89]
EC: Productivity of media spending	TVADVERTISING_GDP	0.214	0.211	0.025	-0.004	-0.053	-0.056
		[1.84]*	[1.98]*	[0.03]	[0.01]	[0.49]	[0.55]
LB: Executive checks on legislators	CHECKS	0.153		1.599		0.052	
		[2.10]**		[3.04]***		[0.76]	
LB: Executive checks on legislators	BinaryCHECKS		1.809		19.12		0.514
			[2.52]**		[3.54]***		[0.75]
LB: Executive electoral competition	EIEC	0.368		-0.696		0.069	
		[2.58]**		[0.68]		[0.52]	
LB: Executive electoral competition	BinaryEIEC		1.576		-0.032		0.83
			[3.75]***	0.00-	[0.01]		[2.05]**
LB: Undivided government	ALLHOUSE	0.296	0.369	3.865	3.214	0.318	0.325
		[0.86]	[1.27]	[1.56]	[1.46]	[0.99]	[1.16]
LB: Undivided government	ESIMILARITY	0.326	0.496	-2.732	-2.07	-0.345	-0.407
	Ormateur	[0.97]	[1.58]	[1.13]	[0.88]	[1.11]	[1.35]
	Constant	0.537	0.68	9.089	14.057	2.568	2.434
	N7	[0.43]	[0.82]	[1.00]	[2.24]**	[2.18]**	[3.05]***
	Ν						