Border Processing, Trade Costs and New

1

High border costs motivate new trade policy

Borders impose costs on trade ows Traditionally: tari s, quotas and general border e ects. More recently: the processing of shipments Theory

1

High border costs motivate new trade policy

Borders impose costs on trade ows Traditionally: tari s, quotas and general border e ects. More recently: the processing of shipments

Policy consequence: 2013 WTO Agreement on Trade Facilitation Simpli cation, modernization, harmonization of trade processes

High border costs motivate new trade policy

Borders impose costs on trade ows Traditionally: tari s, quotas and general border e ects. More recently: the processing of shipments

Policy consequence: 2013 WTO Agreement on Trade Facilitation Simpli cation, modernization, harmonization of trade processes Theory

High border costs motivate new trade policy

Borders impose costs on trade ows Traditionally: tari s, quotas and general border e ects. More recently: the processing of shipments

Policy consequence: 2013 WTO Agreement on Trade Facilitation Simpli cation, modernization, harmonization of trade processes

Roberto Azevedo - Director-General of the WTO:

\WTO Trade Facilitation Agreement has come into force! This is the biggest global trade deal of this century" \The impact of the Trade Facilitation Agreement could be greater than the elimination of all existing tari s around the world" Hopes are high! Theory

High border costs motivate new trade policy

Borders impose costs on trade ows Traditionally: tari s, quotas and general border e ects. More recently: the processing of shipments

Policy consequence: 2013 WTO Agreement on Trade Facilitation Simpli cation, modernization, harmonization of trade processes

Roberto Azevedo - Director-General of the WTO:

\WTO Trade Facilitation Agreement has come into force! This is the biggest global trade deal of this century" \The impact of the Trade Facilitation Agreement could be greater than the elimination of all existing tari s around the world" Hopes are high!

Don't know how rms manage these processes Don't know how this a ects trade, trade theory, or, trade facilitation

Empirical Facts

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

No comprehensive existing datasets for trade processing costs *Room for empirical work.*

No comprehensive existing datasets for trade processing dosts Room for empirical work

Firms optimize supply chain)s Room for theory

Empirical Facts

Theory

Empirical Evidence

Conclusion

Why is this challenging and interesting?

No comprehensive existing datasets for trade processing costs *Room for empirical work*.

Firms optimize supply chains Room for theory.

Policies:

A stew of provisions to streamline document, information and shipment processing.

How can we measure this in a coher2(w)s 0.92111ay?

Tri s are comparatively boring.

They are usually exogenously set, measurable, reported in datasets and rms take them as given...

No comprehensive existing datasets for trade processing costs *Room for empirical work*.

Firms optimize supply chains Room for theory.

Policies:

A stew of provisions to streamline document, information and shipment processing.

How can we measure this in a coher2(w)s 0.92111ay?

Tri s are comparatively boring.

They are usually exogenously set, measurable, reported in datasets and rms take them as given...

No comprehensive existing datasets for trade processing costs *Room for empirical work.*

Firms optimize supply chains Room for theory.

Policies:

A stew of provisions to streamline document, information and shipment processing.

How can we measure2579 23(measur cm BsU9 23(ma43(can)ohe4137 rg

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Our starting	point			

Literature shows that slow supply chains are costly (Djankov et al., 2010; Hummels and Schaur, 2013; Carballo et al. 2014; Volpe Martincus et al., 2015; Fernandes et al., 2015; Evans and Harrigan, 2005; Harrigan 2010)

Lenghty processing procedures take longer and raise costs

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Our starting	point			

Literature shows that slow supply chains are costly (Djankov et al., 2010; Hummels and Schaur, 2013; Carballo et al. 2014; Volpe Martincus et al., 2015; Fernandes et al., 2015; Evans and Harrigan, 2005; Harrigan 2010)

Lenghty processing procedures take longer and raise costs

How to measure time?

Enterprise Survey and Doing Business: Aggregate de facto versus de jure measures (Hallward-Driemeier and Prichett, 2015) Total border time versus time in inspections, unloading, etc Time to import versus time to export versus time in ocean transit (Djankov et al., 2010; Hummels and Schaur, 2013; Volpe Martincus et al., 2015; Fernandes et al., 2015)

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Our start	ing point			

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we c	do in this paper			

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we	do in this paper			

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we d	o in this paper			

Theory: Firms optimize supply chains taking into account delivery windows and random processing times.

Provide fundamental for time cost elasticities and sources for heterogeneity.

Clarify measurement and identi cation problems.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we do	o in this paper			

Theory: Firms optimize supply chains taking into account delivery windows and random processing times.

- Provide fundamental for time cost elasticities and sources for heterogeneity.
- Clarify measurement and identi cation problems.
- Provide a theory consistent time-cost function.

Theory

What we do in this paper

Empirical Facts to characterize the border process.

Theory: Firms optimize supply chains taking into account delivery windows and random processing times.

Provide fundamental for time cost elasticities and sources for heterogeneity.

Clarify measurement and identi cation problems.

Provide a theory consistent time-cost function.

Inform cost rankings based on di erent time meaures.

Empirics: Detailed import data for Peru.

Merge detailed processing of shipments with rm level import data. Estimate the costs elasticities employing xed e ect and IV techniques.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we	do in this paper			

Empirical Facts

Theory

Empirical Evidence

Conclusion

Empirical Facts

Theory

Empirical Evidence

Conclusion

Empirical Facts

Theory

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Related L	₋iterature			

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Related L	iterature			

A set of papers identify trade costs with respect to frictions related to crossing borders (McCallum, 1995; Helliwell, 1996; and Anderson and van Wincoop, 2003).

Instead of estimating a catch all border e ect, we quantify the impact of detailed border procedures.

Empirical Facts

Theory

Empirical Evidence

Conclusion

Empirical Facts

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Import Pr	ocessing Data			

Detailed data taken from import declarations and load manifests at the transaction level data, 2007-2013.

Source: Peru's National Tax Agency (SUNAT).

For each shipment clearing through the sea-port of Callao we observe:

- 1. Date when the ship arrived.
- 2. Date the shipment (container) was unloaded.
- 3. Date the customs import declaration was created and registered.
- 4. The customs channel.
- 5. Date the shipment was released by customs.

Transaction Level: importing rm-by-export country-by-HS10 product-by-shipment

Fact 1- Processing Time and Storage Time

Stage	Channel	Mean	5th	50th	95th
Total Border	All	16.5	4.0	12.0	44.0
	Green	11.6	4.0	8.0	29.5
	Red	23.2	7.0	19.0	55.0
Storage	All	11.0	2.0	7.0	32.0
	Green	9.7	2.0	7.0	27.0
	Red	12.5	2.0	8.0	37.0
Port and Custom	All	6.4	1.0	4.0	19.0
(\Processing")	Green	3.8	1.0	2.0	6.0
	Red	12.1	4.0	9.0	26.0

Total Border : duration from arrival to customs clearance. Processing: time spend in actual processing stages: Port and Custom. Theory

Fact 1- Processing Time and Storage Time

Stage	Channel	Mean	5th	50th	95th
Total Border	All	16.5	4.0	12.0	44.0
	Green	11.6	4.0	8.0	29.5
	Red	23.2	7.0	19.0	55.0
Storage	All	11.0	2.0	7.0	32.0
	Green	9.7	2.0	7.0	27.0
	Red	12.5	2.0	8.0	37.0
Port and Custom	All	6.4	1.0	4.0	19.0
(\Processing")	Green	3.8	1.0	2.0	6.0
	Red	12.1	4.0	9.0	26.0

Total Border : duration from arrival to customs clearance.

Processing: time spend in actual processing stages: Port and Custom.

Firms face atime distribution where the storage and channels matter.

Fact 2- Exporters manage storage time

	Storage					
Port Time	-0.152***	-0.169***	-0.111***	-0.132***		
	(0.011)	(0.013)	(0.011)	(0.012)		
	Customs Time					
Storage Time	-0.001	-0.009	-0.005	-0.016		
	(0.007)	(0.008)	(0.006)	(0.011)		
Firm FE	Yes	No	Yes	No		
Product-Origin FE	Yes	No	Yes	No		
Firm-Product-Origin FE	No	Yes	No	Yes		
Day FE	No	No	Yes	Yes		

Firms absorb longer unloading times with shorter storage times

Fact 2- Exporters manage storage time

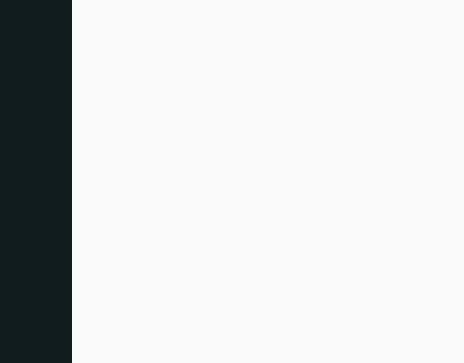
	Storage				
Port Time	-0.152***	-0.169***	-0.111***	-0.132***	
	(0.011)	(0.013)	(0.011)	(0.012)	
	Customs Time				
Storage Time	-0.001	-0.009	-0.005	-0.016	
	(0.007)	(0.008)	(0.006)	(0.011)	
Firm FE	Yes	No	Yes	No	
Product-Origin FE	Yes	No	Yes	No	
Firm-Product-Origin FE	No	Yes	No	Yes	
Day FE	No	No	Yes	Yes	

Firms absorb longer unloading times with shorter storage times Longer storage times have no e ect on customs times

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Fact 3- Firm Heterogeneity

Stage	Firm Type	Mean	5th	50th	95th
Total Border	New Importers	24.7	7.0	20.0	0 60.0
	Incumbent	15.2	4.0	11.0	40.0
Processing	New Importers	9.8	2.0	8.0) 25.0
	Incumbent	5.8	1.5	4.0	17.0
Total Border	Non-Exporters	17.2	5.0) 13.0	0 45.0
	Exporters	13.0	4.0	9.0) 37.0
Processing	Non-Exporters	7.2	2.0	5.0	20.0
	Exporters	4.8	1.0	3.0) 14.0


Variation related to standard trade models hidden in aggregate data.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Fact 3- Firm Heterogeneity

Stage	Firm Type	Mean	5th	50th	95th
Total Border	New Importers	24.7	7.0	20.0	0 60.0
	Incumbent	15.2	4.0	11.0	40.0
Processing	New Importers	9.8	2.0	8.0) 25.0
	Incumbent	5.8	1.5	4.0	17.0
Total Border	Non-Exporters	17.2	5.0) 13.0	0 45.0
	Exporters	13.0	4.0	9.0) 37.0
Processing	Non-Exporters	7.2	2.0	5.0	20.0
	Exporters	4.8	1.0	3.0) 14.0

Variation related to standard traRG /F1.c50.13725 0.2157 0.23137 RG

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusion	s from empiric	al facts		

Total border times are a combination of storage times and processing times and *ndogeneous* to the rms.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusio	ns from empiric	al facts		

Total border times are a combination of storage times and processing times and *ndogeneous* to the rms.

Processing times are determined by customs and port e ciency

Conditional on xed e ects, less likely to be endogenous

Easier to measure and monitor

Processing times are random: random allocation to customs

inspection, document handling, port strikes, equipment failure, etc.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusions f	rom empirical fa	acts		

Total border times are a combination of storage times and processing times and ndogeneous the rms.

Processing times are determined by customs and port e ciency

Conditional on xed e ects, less likely to be endogenous

Easier to measure and monitor

Processing times are random: random allocation to customs

inspection, document handling, port strikes, equipment failure, etc.

Firms optimize

Longer processing times are correlated with lower bu er times Have to interpret processing costs through rms' supply chain optimization

Theory

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Expected	Cost Function			

Substitue *t* into objective to obtain:

$$TC = ('; !; r; \#) t^{\#}$$

Empirical Evidence

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Introduction	Empi	rical Facts	Theory		Empirical Evidence	Conclusion
Data - Sna	pshot					
				"O · ·		-

Year	Import Value	#Importers	#Origins	#Products			
2007	19,100	19,290	199	6,989			
2008	27,900	22,542	205	6,230			
2009	20,600	23,597	201	6,174			
2010	28,200	25,592	203	6,233			
2011	36,100	26,804	210	6,177			
2012	40,200	28,799	211	6,302			
2013	41,100	30,131	209	6,303			
	Percentage Share Callao						
2007	72.3	64.0	86.4	92.4			
2008	72.4	65.4	87.3	92.6			
2009	73.8	65.7	93.0	93.0			
2010	75.5	64.8	84.7	92.9			
2011	76.7	65.8	84.8	93.2			
2012	75.9	65.5	90.5	93.3			
2013							

Introduction	Empirical Facts		Theory		Empirical Evidence			Conclusion
	Pro		ocessing Time		Total Time			
-		OLS	IV1	IV2	OLS	IV1	IV2	
-	Time	-0.049 ^a	-0.236 ^a	-0.234 ^a	-0.057 ^a	-0.556 ^a	-0.551 ^a	
		(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)	
	Trade Costs			-1.541 ^a			-1.540 ^a	
				(0.044)			(0.044)	
-	IV1: Congestion		0.028 ^a	0.028 ^a		0.009 ^a	0.009 ^a	
			(0.000)	(0.000)		(0.000)	(0.000)	
	IV2: Channel		0.651 ^a	0.651 ^a		0.281	0.281 ^a	
			(0.003)	(0.003)		(0.003)	(0.003)	
-	F-Test		33,593	33,594		6,632	6,,633	
			[0.000]	[0.000]		[0.000]	[0.000]	
	Hansen		0.562	0.570		0.949	0.934	
			[0.453]	[0.450]		[0.330]	[0.334]	
-	Firm-Y FE	Yes	Yes	Yes	Yes	Yes	Yes	
	Orig-Prod-Y FE	Yes	Yes	Yes	Yes	Yes	Yes	
	Observations	589,842	589,842	589,842	589,844	589,844	589,844	18

The Impact of Border Time on Firms' Imports

	Processing Time				Total Time	
	OLS	IV1	IV2	OLS	IV1	IV2
Time	-0.049 ^a	-0.236 ^a	-0.234 ^a	-0.057 ^a	-0.556 ^a	-0.551 ^a
	(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)
Trade Costs			-1.541 ^a			-1.540 ^a
			(0.044)			(0.044)

а

Empirical Evidence

Conclusion

The Impact of Border Time on Firms' Imports

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

The Impact of Border Time on Firms' Imports

	Processing Time				Total Time	
	OLS	IV1	IV2	OLS	IV1	IV2
Time	-0.049 ^a	-0.236 ^a	-0.234 ^a	-0.057 ^a	-0.556 ^a	-0.551 ^a
	(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)
Trade Costs			-1.541 ^a			-1.540 ^a
			(0.044)			(0.044)

^asigni cant at 1% - Clustered S.E. at Firm level

Total time overestimates the processing elasticity as our model predicts. *Intuition:* storage time dampens the variation.

High attenuation bias for OLS for total time*Intuition:* rms can actively manage storage (additional endogeneity).

Introduction	Empirical Facts	I neory	Empirical Evidence	Conclusion
Results -	Robustness Che	ecks		
Di e	erent sets of FE: Firm-Year			
	Origin-Product-Year			

Firm{Year, Origin-Product-Year, Firm-Product-Origin

Shipments pre-processed (small share of shipment)

Construints Construints

Di erent windows for congestion: 2-10 days Focusing only on physical inspection

Products that requires permits to import

Firm-Product-Year, Origin-Product-Year Firm{Origin-Year, Origin-Product-Year

Clustering at di erent levels

Firm xed e ects Controling Sample for:

Light products

IV:

Alternative speci cation: specify prices and freight charges

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Results -	Quanti cation			

Elasticities are not enough to quantify border processing times:

It requires estimating ('; #; r; !): ugly function!

' is estimated from the processing time distribution

) $t_{mediar} = \frac{1}{2} t_{min}$

With and ' we can recover#

Lower bound on that depends only on; # based on our model

We show that
$$> = \frac{\frac{\# + i}{r}}{2^{\frac{\#}{r}+r}}$$

In the paper we have multiple ways to compute lambda

Bootstrapped estimates to evaluate signi cance.

Introduction	Empirical Facts	Theory	Empirical Evidence	ce Conclusion
Results - Lo	wer Bound Q	uanti cation		
		IV1	IV2	
		2.977	1.541	
		0.079	0.152	
		(0.008)	(0.008)	
	'	2.072ª	2.072ª	
		(0.037)	(0.037)	
	#	0.082	0.164	
		(0.007)	(0.016)	
	(_ 1)	0.013	0.026	
		(0.002)	(0.004)	

(Time Cost 1)

At the average median processing time, border processing tari between 17% and 35% where expected late costs are between 4.5% and 9.7%.

0.167ª

(0.015)

0.346

(0.036)

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Results - L	₋ower Bound Q	uanti cation		
		IV1	IV2	
		2.977	1.541	
		0.079ª	0.152ª	
		(0.008)	(0.008)	
	'	2.072ª	2.072ª	
		(0.037)	(0.037)	
	#	0.082ª	0.164 ^a	
		(0,007)	(0.016)	

	(0.037)	(0.037)
#	0.082ª	0.164ª
	(0.007)	(0.016)
(_ 1)	0.013ª	0.026 ³
	(0.002)	(0.004)
(Time Cost 1)	0.167ª	0.346 ^a
	(0.015)	(0.036)

Policy experiment: dropping physical inspection of documents reduces processing from 5 to 2 days and border processing tari to 24 and 12%.

Results - Quanti cation: Firm Heterogeneity

Trade costs are usually assumed homogeneous across rms. This mutes policy consequences and conceals rms' optimal responses to trade barriers.

Our results shows heterogeneity across rms.

Larger and Exporter Firms are more elastic to delays but compensate with investing in supply chain and reducing time.

New importers face greater costs.

	Size			Expo	Export Experience			Import Experience	
	SF	LF	Di	NEF	EF	Di	NIF	IF	Di
Time	-0.204 ^a	-0.296 ^a	а	-0.199 ^a	-0.268 ^a	а	-0.422 ^a	-0.207 ^a	а
	2.922	3.129		2.945	3.038		2.940	2.977	
	0.070 ^a	0.094 ^a	а	0.068 ^a	0.088 ^a	а	0.144 ^a	0.069 ^a	а
,	2.011 ^a	2.128 ^a		1.999 ^a	2.070 ^a		3.053 ^a	2.037 ^a	а
#	0.072	0.099	b	0.070	0.092	b	0.151	0.072	а
(_ 1)	0.011 ^a	0.015 ^a	С	0.011 ^a	0.014 ^a	С	0.016 ^a	0.011 ^a	
Avg Time	6.531	3.771		6.961	3.846		11.868	5.374	
Time Cost	0.153 ^a	0.150 ^a		0.153 ^a	0.142 ^a		0.449 ^a	0.136 ^a	а

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Conclusion

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusion				

We focus on the role of border processing as a source of border costs.

We model rm's optimal time management to meet delivery schedules when processing times are uncertain. We embed this into an import demand setting to develop an identi cation strategy.

We estimate the model and structural parameters using highly detailed data from Peru.

Our results show

Border processing imposes a trade cost greater than average applied WTO tari s.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusion				

Our results show

Processing tari s are dispersed across products, and especially new trade relationship su er from high border costs.

Aggregate measures of border-processing are di cult to interpret as cost ranking because they combine actual processing times with optimally chosen storage times. Even actual processing times systematically vary with rms and product characteristics. Second moments about the processing distribution would be useful to interpret elasticities.