De nition

Most trade models assume importers may switch across suppliers at no co

(日) (四) (三) (三) (三) (○) (○)

In practice, changing supplier might be costly

) Di cult: fewmight be costly

Motivation

Stickiness of trade relationships is key for many (trade) analysis:

Levchenko (Restud, 2007) & Nunn (QJE, 2007): comparative advantage

Acemoglu et al. (JF, 2009): vertical integration

Antras & Staiger (AER, 2012): trade policy

Antras & Chor (ECTA, 2013): global value chains

Barrot & Sauvagnat (QJE, 2016): propagation of shocks in networks

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

A fresh look at relationship-stickiness

Length of a rm-to- rm relationship, conditional on the seller's competitiveness, is informative about the stickiness of the relationship

Dispersion across products is informative about product-level attributes that tend to lengthen rm-to- rm relationships) Ex-post indicator of the relationship-stickiness of traded goods

Ex-post nature of the measure implies we are agnostic about the speci c source of stickiness:

-) Product attributes, e.g. relation-speci c investments (Joskow, 1987, Nunn, 2007) or switching costs (Klemperer, 1995, MacKay, 2017)
-) Contractual habits, e.g. relational contracts under imperfect contractual enforcement and uncertainty about rms' reliability (Macchiavello & Moriaria, 2015)

Introduction

What we do (1/2): Measurement

Mean durations of buyer-seller relationships

- exploit rm-to- rm trade data (French exports to EU countries, 1995-2010)
- compute the duration of trade relationship, at the seller-buyer-product level

Estimate of product-level relationship stickiness

-) conceptual framework where buyers receive o ers from sellers randomly
-) stickiness a ects the likelihood that a buyer keeps on interacting with the same seller, conditional on an o er
-) length of relationships is a function of RS and supplier's competitiveness

2017 6 / 37

(日) (周) (日) (日) (日)

What we do (2/2): Applications

We use our RS measure to analyze 5 aspects of international trade:

- Gravity and the stickiness of traded goods
- Institutional comparative advantage in the production of high-RS goods
- 8 Relationship stickiness and intra rm trade
- Trade-comovement correlation and the stickiness of relationships
- Stickiness, uncertainty, and the formation of exporter-importer relationships

Literature

Measures of relationship speci city

) Rauch (1999), Nunn (2007)

Duration of trade relationships

-) Besedes and Prusa (2006): higher hazard rate for homogeneous products
-) Besedes (2008), Nitsch (2009), Békés and Muraközy (2012)

Firm-to- rm trade

-) French data: Kramarz, Martin, Mejean (2016), Lenoir, Martin, Mejean (2016)
- Other: Bernard et al. (2014), Carballo et al. (2013), Magerman et al. (2016)
- Dynamics of trade: Eaton, Eslava, Jinkins, Krizan, Tybout (2016)

Literature speci c to each application

French Customs data reporting the value of exports to EU countries per transaction from 1995 to 2010

For each transaction we know the (French) seller, the 8-digit (CN) product, the EU buyer, the month and year

Aggregate data by seller, buyer, product, month and year

Concorde the CN8 data across years to avoid nomenclature-driven censor

Need to follow the history of buyers: drop buyers importing only once over the entire sample (44% of buyerproduct pairs but less than 2% of the value of trade)

- (ロ) (個) (注) (注) (注

Data and stylized facts

Characteristics of trade relationships

Choice of a seller-buyer matching structure guided by the data

-) at a given date, do we observe shipments from one seller-to-one buyer, one seller-to-many buyers, many sellers-to-many buyers etc ?
- Most sellers(-product) interact with more than one buyer within a month 68% of sellers export each of their products to more that one buyer per month on average (conditional on exporting)
- Buyers tend to import a product from a single French seller About 95% of the buyers import a 8-digit product, at a given date, from a single French seller

many-to-one relationships : reminiscent to on-the-job search models (unlike Bernard et al. 2017, we work i) at the product level, ii) at the monthly level)

イロト イポト イヨト イヨト 二日

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

Large transactions last longer

Table: Duration, switching probabilities, and the size of trade ows

(1)	(2)	(3)	(4)	(5)	(6)
duration	duration	duration	Log of 1/P(switch)	1/P(switch Trade)	duration

Mean exprex1.-7.97 596 Tg5 exprex1.-7.97 596 Tg5 exprex 468(*r 468(*r 468(20r761175r 468920r761621(.0005

· < □ > <@ > < 글 > < 글 > □ = · <

Conceptual framework: duration

Under these conditions, the expected length of a buyer-seller relationship, conditional on its price is given by:

$$E[\mathcal{T}_{jp}] = \sum_{k=1}^{X^{1}} k(1 - H_{P}(p=))^{k-1} H_{P}(p=) = \frac{1}{H_{P}(p=)}$$

) The duration of a relationship is just the inverse of the probability of switchir

イロト (周) (日) (日) (日) (日)

(this holds true in continuous time)

Conceptual framework

Toward an econometric model: Assumption 1

We do not observed quality-adjusted prices - but we observe sales Assumption 1: Demand for imports is iso-elastic (price-elastici)y) duration in terms of sales () rather than unobserved prices

$$E[T jr] = \frac{1}{(1 H_{R}(r)^{-1})}$$

イロト (周) (日) (日) (日) (日)

Toward an econometric model: Assumption 2

We have to make assumptions regarding the distribution of prices Assumption 2: the distribution of prices is inverse-Pareto

) transactions are distributed Pareto

$$H_R(r) = 1$$
 $\frac{r}{R_{min}}$

with R_{min} the scale parameter and the shape parameter

Toward an econometric model: Assumptions 1 and 2

Assumptions (1) and (2) deliver a log-linear relationship btw the expected (conditional) duration and relationship stickiness :

$$E[T jr] = \frac{r}{R_{min}}$$

) -^k/₋ is our measure of relationship-stickiness
) duration of a buyer-seller relationship is increasing in
) duration increases with the size of the transaction

Martin, Mejean, Parenti

Relationship-stickiness

2017 18 / 37

(日) (同) (三) (三)

Discussion

Departure from the competitive framework: Bertrand-type competition

イロト (周) (日) (日) (日) (日)

- same switching probability as in the competitive model
- but the distribution of transactions changes

Departure from the Pareto distribution of productivity

-) focus on the log-normal case
-) in-progress

Method of moments

Moments: average duration within transaction-size deciles

$$Z_{d+1} T(\mathbf{r})_{zpd} f(\mathbf{r}) d\mathbf{r} = \frac{p^{k_p}}{p} \log \frac{10}{9} \frac{d}{d}$$

 $d = 0; 1; ...; 9; \frac{10}{9} \frac{d}{d}$ increases with size Regress the log of averaged duration within a decile on) A function of the decile of the transaction)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Share of non-homog. products vs RS measure

Application 1/5: Gravity for relationship-speci c goods

Gravity equations in trade: empirical regularity with theoretical underpinning (Head & Mayer 2014)

Some products defy gravity (eg. luxury goods cf. Martin & Mayneris 2015 What about high-RS products?

- Almost no guidance in the literature
- Atalay et al. (2017): rm boundaries are barriers to trade
- Head & Ries (2008): monitoring costs and distance

Unit values increase with distance (Hummels and Skiba 2004)

Application 1/5: Results

	(1)	(2)	(3)	(4)	(5)	(6)
	Value	UV	Value	UV	Value	UV
Distance (log)	-0.571***	0.467***	-0.699***	0.101***	-0.990***	0.087***
	(0.020)	(0.006)	(0.021)	(0.006)	(0.023)	(0.007)
RS	1.008***	-0.166***				
	(0.093)	(0.041)				
- dist.	-0.151***	0.042***	-0.143***	0.020***	-0.113***	0.066***
	(0.012)	(0.005)	(0.012)	(0.004)	(0.010)	(0.005)
Upstreamness	1.008***	-0.166***				
	(0.041)	(0.043)				
- dist.	0.010**	-0.084***	0.021***	0.028***	-0.012*	0.047***
	(0.005)	(0.000)	(0.005)	(0.002)	(0.007)	(0.002)
Fixed e ects	country country+		try+ sect	sect country sect		
Observations	5,703,7		03,782		5,	473,330
R-squared	0.164	0.178	0.285	0.654	0.578	B 0.770
Clustered (country) standard errors in parentheses with , , denoting signi cance at the						

Clustered (country) standard errors in parentheses with , , denoting signi cance at 10, 5 and 1% levels.

Application 2/5: Institutional comparative advantage

Nunn (2007): countries with good contract enforcement specialize in the production of goods for which relationship-speci c investments are most important.

Baseline speci cation:

```
log(export<sub>c</sub>)74 09626 Tf98 m 126.135 163.745 -21Tf 6.435 1
```

Application 2/5: Results

	(1)	(2)	(3)	(4)	(5)
		log(exports)		Balassa Index	1 _{Balassa⊳ 1}
Rule of law					
RS	0.349***		0.408***	0.286**	0.022***
	(0.053)		(0.053)	(0.120)	(0.006)
Nunn specif.		0.811***	0.978***	0.316*	0.027*
		(0.100)	(0.117)	(0.168)	(0.015)
Upstreamness			0.034	0.013	0.002
			(0.021)	(0.024)	(0.002)
Fixed e ects	country(122) and sector(4; 326)				
Observations	296,187	296,187	292,938	527,284	527,284
R-squared	0.605	0.606	0.610	0.012	0.139
Clustered (country) sta 10, 5 and 1% levels.	andard errors	in parentheses	with , ,	denoting signi ca	ance at the

2017 27 / 37

イロト イロト イヨト イヨト 三日

Application 3/5: Intra rm trade

Theory: contracts and speci c inputs (Antras 2003, Antras & Helpman 2004

Empiric: Bernard et al. (2010), Nunn & Tre er (2013), Corcos et al. (2010)

-) Product and country characteristics explain the share of intra rm trade
- What fraction of dispersion across products might be explained by our measure?

Application 3/5: Results

	(1)	(2)	(3)	(4)
		Share of	f intra- rm	
	exports imports			
RS ()	0.177***	0.180***	0.140***	0.138***
	(0.040)	(0.041)	(0.030)	(0.031)
Nunn		0.406***		0.199***
		(0.063)		(0.046)
Upstreamness		0.060***		0.015
		(0.016)		(0.011)
Elasticity ()		0.002		-0.005
		(0.006)		(0.004)
Observations	378	378	378	378
R-squared	0.058	0.166	0.071	0.119

Application 4/5: Trade and BCC

Frankel & Rose (1998) di Giovanni & Levchenko (2010): Countries that trade more together comove more. Role of international IO linkages as a driver of comovements

Hypothesis: Propagation of shocks in production networks should be especially strong for high input-speci c goods (Barrot & Sauvagnat, 2016)

Baseline speci cation (di Giovanni & Levchenko, 2010):

$$_{kl}^{ij} = + \ln \operatorname{Trade}_{kl}^{ij} + u + _{kl}^{ij}$$

ij a pair of countries,kl a pair of sectors,u a set of xed e ects
 ^{ij}_{kl} the correlation between value added in sector of country i and sectorl of
 country j
 Trade^{ij}_{kl} a measure of the intensity of bilateral trade in both sectors:

$$Trade_{kl}^{ij} = \frac{1}{T} \frac{X}{t} \frac{X_{kt}^{ij} + X_{lt}^{jj}}{X_{kt}^{i} + X_{lt}^{j}}$$

Martin, Mejean, Parenti

Relationship-stickiness

2017 30 / 37

イロト イポト イヨト イヨト 二日

Trade-BCC with relationship-speci c trade

Augmented speci cations:

ij = + In Trade^{ij}_{kl} + RS^{ij}_{kl} + ^HRS^{ij}_{kl} In Trade^{ij}_{kl} + u + ^{"ij}_{kl} with RS^{ij}_{kl} a trade-weighted average of product-level RS indicators
 ij = + ^HTradeH^{ij}_{kl} + ^LTradeL^{ij}_{kl} + u + ^{"ij}_{kl} with TradeH^{ij}_{kl} and TradeL^{ij}_{kl} the two sub-components ofTrade^{ij}_{kl}, respectively computed on above-the-median and below-the-median RS products

Data: UNIDO + ComTrade

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

Application 5/5: Uncertainty

Uncertainty and the formation of trade relationships

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

Conclusion

Conclusion

New method to reveal relationship speci city using transaction data

イロト (周) (日) (日) (日) (日)

Easy to implement (and easy to improve)

Easy to use : applied to 5 key issues in international trade

RS dataset available to other researchers soon

Discussion: strengths and limits of the RS measure

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 - のへぐ

Correlation across measures

Table: Correlation of estimated RS measures

	Mean	1=	1=
	duration	P(switch)	P(switch/Trade)
Mean duration	1.000		
P(switch) ¹	.828	1.000	
P(switch/Trade) ¹	.793	.602	1.000
	Measures	s accounting	g for censoring
Duration _{cens}	.922		
P(switch) ¹ _{cens}		.883	
P(switch/Trade) ¹ _{cens}			.899

Policy uncertainty, 2000-2015

Table: Correlation - uncertainty

	DE	IT	UK	ES
Germany	1,00			
Italy	0,52	1,00		
UK	0,67	0,55	1,00	
Spain	0,54	0,49	0,45	1,00

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

•