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Abstract

We evaluate the consequences of oligopolistic behavior for the estimation of gravity
equations for trade ows. With oligopolistic competition, �rm-level gravity equations
based on a standard CES demand framework need to be augmented by markup terms
that are functions of �rms’ market shares. At the aggregate level, the additional term
takes the form of the exporting country’s market share in the destination country
multiplied by an exporter-destination-speci�c Her�ndahl-Hirschman index. For both
cases, we show how to construct appropriate correction terms that can be used to avoid
problems of omitted variable bias. We demonstrate the quantitative importance of our
results for combined French and Chinese �rm-level export data as well as for a sample
of product-level imports by European countries. Our results show that correcting for
oligopoly bias can lead to substantial changes in the coe�cients on standard gravity
regressors.
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1 Introduction

Gravity equations have been the predominant tool for analyzing the determinants of bilateral

trade ows since their introduction by Tinbergen (1962) over 50 years ago. In their most

basic form, gravity equations predict that trade between countries is a log-linear function

of the economic mass of the two trading partners and bilateral frictions such as distance

or tari�s. Even in this simple form, gravity equations have substantial explanatory power,

often explaining in excess of 70-80% of the variation in the trade ows between countries.

Starting with Anderson (1979), researchers have shown that gravity equations can be derived

from a number of mainstream theoretical frameworks, allowing a tight link to economic

welfare analysis. Not surprisingly then, gravity equations have become the workhorse tool







which is our key contribution.

Finally, in work concurrent to and independent of ours, Heid and Staehler (2020) propose

an extension of Arkolakis, Costinot, and Rodriguez-Clare (2012)’s formula to evaluate the

gains from trade under oligopoly. To consistently estimate parameters necessary for the

quanti�cation of their model, they derive and estimate an aggregate gravity equation in

oligopoly under the assumption that all industries are symmetric and each country hosts one

�rm per industry. Moreover, they have to take key parameters (such as price elasticities) from

the existing literature, although the underlying estimation procedures are inconsistent with

oligopolistic competition. By contrast, the �rm- and industry-level gravity equations that we

derive and estimate allow industries to di�er in an arbitrary way and each country to host

multiple (heterogeneous) �rms. Moreover, we propose an adaptation of existing estimation

procedures to obtain key parameter estimates in a way consistent with oligopolistic behavior.

The rest of this paper is organized as follows. In Section 2, we derive a �rm-level gravity

equation from a CES-demand framework with oligopolistic quantity competition. We also

discuss how to deal with selection and heteroscedasticity in estimating our oligopolistic �rm-

level gravity equation. Next, we show in Section 3 how to modify the Feenstra-Broda-

Weinstein estimation procedure to account for oligopolistic behavior and obtain demand

and supply elasticity estimates. In Section 4, we derive our correction term for aggregate

product-level trade ows. We also discuss how to adapt the methodology developed by

Helpman, Melitz, and Rubinstein (2008) so as to deal with selection in the estimation of

sector-level gravity under oligopoly. In Section 5, we describe the data sources and present

the empirical results from our �rm- and sector-level gravity estimations. In Section 6, we

provide Monte Carlo simulations to evaluate the performance of our oligopoly correction

term for sector-level regressions and that of our methods to deal with heteroscedasticity and

selection. Finally, we conclude in Section 7. Appendix A collects proofs of our theoretical

results. Results obtained when assuming price instead of quantity competition are presented

in Appendix B. Appendix C contains lists of the countries present in our datasets.
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2 Firm-Level Gravity in Oligopoly

We consider a multi-country world with a continuum of sectors, indexed by z. The represen-

tative consumer in country n maximizes
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where cin is a �rm-destination-speci�c cost shifter and ~� in a �rm-destination-speci�c trade

cost that takes the usual iceberg form.5

We assume throughout that the returns-to-scale parameters  satis�es  > �1=� , which

means that the marginal cost of production should not decrease too fast with output. This

(weak) assumption guarantees that all the pro�t functions we consider will be unimodal.

Unlike in monopolistically competitive markets, �rms take into account the impact of

their actions on the CES-composite, Qn , when setting quantities. For what follows, it is

useful to generalize further the degree of strategic interaction between �rms by introducing

a conduct parameter, � (see Bresnahan, 1989): When �rm i increases its output qin by an

in�nitesimal amount, it perceives the induced e�ect on Qn to be equal to �@Qn=@qin . Under

monopolistic competition, the conduct parameter � takes the value of zero, whereas it is

equal to one under Cournot competition. The �rst-order condition of pro�t maximization of

�rm i in destination n is given by
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is the market share of �rm i in destination n.

Rearranging terms in equation (2) yields �rm i ’s optimal markup in destination n:

� in =
1

�
+ �

� � 1

�
sin (4)

where � in � (pin � C0
in (qin )) =pin is the Lerner index of product



the value of its sales in market n can be written as:

r in = pin qin =

�
cin � in

1� � in

� 1� �
1+ � �

ain P � � 1
n En

� 1+ 
1+ � (5)

So far, we have not imposed any structure on trade costs, � in or the taste and cost shock

terms, ain and cin . For comparison with the existing literature and to facilitate the exposition

of our identifying assumptions, we now assume that the two shock terms can be decomposed

log-linearly as log ain = "a
i + "a

n + "a
in and log cin = " c

i + " c
n + " c

in , respectively. We further

assume that trade costs can be decomposed as log � in = �X in + " �
in where the X in include

variables with bilateral variation such as (log) distance, common language or dummies for

the presence of trade agreements or currency unions. Obtaining consistent estimates of the

coe�cients on these bilateral terms (� ) is a key objective of much of gravity equation-based

research.6 Finally, we again assume a three-way decomposition of the trade cost error term,

" �
in = " �

i + " �
n + � �

in .

Taking the logarithm of equation (5) yields a �rm-level gravity equation of the form

log r in = � n + � i + �
1� �

1 + �
X in +

� � 1

1 + �
log (1� � in ) + " in (6)

where � n and � i summarize destination- and �rm-speci�c terms and

" in =
1

1 + �

h
(1 +  ) "a

in + (1� � ) " c
in + (1� � ) � in

i
:

Note that under the assumption of monopolistic competition, the markup term involving

� would be constant and could be subsumed in � i . In that case, estimation of (6) would

yield consistent estimates of the coe�cient on X in provided that we control for �rm and

destination �xed e�ects (� i and � n) and that the usual orthogonality assumptions (explicitly

or implicitly) made in the gravity literature hold.7

In the presence of strategic interaction between �rms, however, the markup term will
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depend on �rms’ market shares and will thus be correlated with the regressors of interest,

X in ; not including this term will lead to an omitted variable bias. For example, we would

expect �rms to have lower market shares in more distant markets, ceteris paribus, and hence

to charge lower markups there. This implies that log(1� � in ) will be higher in such markets,

leading to a positive correlation between distance and the omitted variable.

Note that this problem is qualitatively di�erent from those arising from other hard-to-

observe gravity components such as expenditure (En), price indices (Pn) or �rm-level marginal

costs because these components can be controlled for by �rm or destination �xed e�ects. By

contrast, markups vary at the �rm-destination level and the inclusion of bilateral �xed e�ects

would make it impossible to identify separately the e�ect of key regressors of interest such

as distance, tari�s or dummy variables for trade agreement.8

Instead, we propose to solve the omitted variable problem by constructing a proxy for

the markup term in (6). Speci�cally, if we had estimates for � and  and data for sin , we

could compute

b� in =
1

b�
+

b� � 1

b�
sin

and estimate

log er in � log r in �
b� � 1

1 + b� b
log (1� b� in ) = � n + � i + �

1� �
1 + �

X in + " in : (7)

Given our earlier orthogonality assumptions, using log er in instead of log r in as the dependent

variable would yield a consistent estimate of � 1� �
1+ � . Using our estimates for � and  would

then allow recovering the parameter of interest, � .9 This approach raises the question of how

to estimate � and  . In the next section, we show how to adapt the estimation procedure

by Feenstra (1994) and Broda and Weinstein (2006) to our setting with �rm-level data and

oligopolistic competition.

2.1 Estimation Challenges for Firm-level Gravity

Recall that our aim is to obtain consistent estimates of the coe�cients on bilateral variables

using either �rm or sector level data. Above we showed that after subtracting a markup

correction term from �rm export values, we could estimate a standard gravity equation with

a set of �rm-product-year and destination-product-year �xed e�ects as well as the bilateral

8Having a time dimension in the data would not help either because markups would then vary by �rm,
destination and time.

9Note the parallel to the literature on trade and quality which uses a similar approach to correct export
values or quantities (e.g., Khandelwal, Schott, and Wei, 2013).
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variables of interest.10

A �rst issue that arises is how to control for destination-speci�c �xed e�ects in a setting

with �rm-level export data. If we only have data for exports from a single country, it is

immediately clear that we can no longer separate the impact of bilateral variables from

the �xed e�ects. For example, if we use information on the exports of French �rms only,

standard bilateral variables such as common language become destination-speci�c as France

is the only origin country in our data. Intuitively, we will not be able to distinguish whether

�rms’ exports to a given destination are high because France and the country in question

share a common language or because of other destination-speci�c factors such as a high price

index or expenditure level. In order to address this issue, we follow Bas, Mayer, and Thoenig

(2017) by combining two datasets on the exports of French and Chinese �rms, respectively.

This ensures that there is within-destination variation in the bilateral regressors of interest,

enabling the use of destination �xed e�ects.

Secondly, we have so far ignored selection issues. In practice, most �rms only export to a

small subset of possible destinations for any given product. When estimating (7) in log-linear

form, �rm-product-destination observations with zero trade ows drop out. In the presence

of export �xed cost f on > 0 there is selection into exporting in our model: �rms will be

more likely to export positive amounts to a given destination if they experience a positive

taste, production or trade cost shock for that destination, potentially creating a non-zero

correlation with the regressors of interest. For example, �rms selling in more distant foreign

markets will be more likely to have received a positive shock, allowing them to operate in

this more di�cult environment. As consequence,

E (" c
in jX in ; r in > 0) 6= 0; E ("a

in jX in ; r in > 0) 6= 0

Here, we adapt an approach proposed by Bas, Mayer, and Thoenig (2017) and restrict our

estimation sample to the largest three French and Chinese �rm in each product category as

measured by overall product-speci�c exports. The basic idea is that these �rms have high

overall exports because they are very productive, produce high-quality products in general

(high "a
i or " c

i ) or have access to low-cost market access technologies (low " �
i ). Such �rms will

tend to serve all or at least most available markets, making the destination-speci�c shocks

less important for market entry decisions. We acknowledge that this is an imperfect solution

10Recall that we dropped the sector/product index (z) for most of our derivations and also ignored the
time dimension to ease exposition. But these dimensions are of course present in our data, and hence price
indices and expenditure levels will vary by destination, product and year, requiring the use of �xed e�ects at
that level.
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but simulation evidence by Bas, Mayer, and Thoenig (2017) shows that focusing on top

exporters does indeed substantially reduce selection bias

Third, in the presence of heteroscedasticity, the log-linear gravity equation provides in-

consistent coe�cient estimates (Santos Silva and Tenreyro, 2006). In particular, we seek a

consistent estimate of E(~r in jX in ). Recall that ~r in = exp(� n +� i +� 1� �
1+ � X in ) exp(" in ). Suppose

that Var(exp(" in )) depends on X in . Then E(" id ) is a function of X id and thus the error term

is correlated with the control variables. A solution to this problem is to include zeros in our

left-hand side variable and estimate (7) in multiplicative form:

E(~r in jX in ) = exp(� n + � i + �
1� �

1 + �
X im )

Recent computational advances in PPML estimation (e.g., Correia, Guimaraes, and Zylkin,

2019) make it possible to include the large number of �xed e�ects required in our setting.11

3 Estimation of Supply and Demand Elasticities

Feenstra (1994) and Broda and Weinstein (2006) propose estimators for the elasticity of

substitution, � , based on the key identifying assumption that shocks over time to import

demand and export supply for a given product are uncorrelated. The equivalent condition

in our context is that E ("a
in " � c

i 0n0) = 0 for all i; i 0 and n; n0, where " � c
in = " �

in + " c
in . That is,

we assume that the �rm-destination-level elements of taste and cost shocks are uncorrelated

across �rms and markets.

Note that this assumption is consistent with non-zero correlations between overall taste

and cost shocks (i.e., E (ain cin ) 6= 0 is allowed). In particular, our method allows for a positive

correlation between �rm-level costs and quality ("a
i and " c

i ) which is to be expected if the

production costs of �rms producing high-quality products are higher. Likewise, our results

are robust to a positive correlation between destination market quality and cost shocks ("a
n

and " c
n). For example, such a correlation could arise if �rms sell higher-quality goods to

high-income markets and incur positive costs of doing so.

We start our derivation by expressing �rm-level revenues of �rm i in market n in terms

of expenditure shares. From equation (1),

log sin = log

�
pin qin

En

�
= log ain + (1� � ) pin + (� � 1) log Pn :

11We include zero trade ows when estimating (7) on a product-by-product basis in Section 5.3
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Now assume that we observe another �rm i 0 selling to the same market n. We can then

subtract the logged market share of that �rm to eliminate the price index:12

�f log sin = log sin � log si 0n = log ain � log ai 0n + (1� � ) (log pin � log pi 0n)

If we observe the same two �rms in another destination n0, we can compute a double di�erence

across the two markets as

�d�f log sin = (1� � ) �d�f log pin + �d�f log ain ;

where �f and �d denote log di�erences across �rms and destinations, respectively. Note

that double di�erencing only leaves the �rm-destination-speci�c parts of the taste shocks:

�d�



market shares:

\�d�f log (cin � in ) = (1 +  ) �d�f log pin + �d�f log (1� � in )�  �d�f log sin

and

\�d�f log ain = �d�f log sin � (1� � ) �d�f log pin :

The sample analogue of our moment condition is then given by

	 (�;  ) =
1

jJnn 0j
X

j 2J nn 0

\�d�f log ain � \�d�f log (cin � in );

where Jnn 0 denotes the set of �rms active in the same two markets. Notice that we obtain

one moment condition per country pair. Stacking these up allows to implement a standard

GMM estimator of � and  .13

Finally, this still leaves us with a potential selection problem in our GMM estimation

procedure for � and  . As a solution, we focus again on the top 3 Chinese and French

exporters (in terms of their overall exports) for any given 6-digit HS product. Finally, in

order to obtain a su�ciently large number of observations for the computation of moments

in our GMM estimation, we restrict the estimates of � and  to be identical within 2-digit

HS products.

4 Sector-Level Gravity in Oligopoly

In this section, we study sector-level trade ows in the oligopoly model of Section 2. We �rst

analyze the equilibrium in a given market using an aggregative games approach (Nocke and

Schutz, 2018b; Anderson, Erkal, and Piccinin, 2020). We then leverage Nocke and Schutz

(2018a)’s approximation techniques to derive a sector-level gravity equation that accounts

for oligopolistic behavior.

Oligopoly analysis in a given destination market. Consider sector z in destination n.

Dropping reference to both z and n to ease notation, we de�ne the market-level aggregator

H as

H � Q
� � 1

� =
X

j 2J

a
1
�
j q

� � 1
�

j

13In practice, this means that we need to observe a su�ciently large number of �rms selling in the same
sector in at least three di�erent markets.
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and �rm i ’s type Ti as

Ti � a
1
�
i

�
�E
ci � i

� � 1

�

� � � 1
� (1+  )

: (8)

Plugging these de�nitions into equation (2), making use of equation (3), and rearranging, we

obtain:

1� �s i = s
1+ �
� � 1

i

�
H
Ti

� � (1+  )
� � 1

; (9)

where � is the conduct parameter introduced in Section 2. As the left-hand side is strictly

decreasing in si and the right-hand side is strictly increasing in si , the equation has a unique

solution in si , which we denote S(T



We are interested in these aggregate exports when �rms compete in a Cournot fashion, i.e.,

when � = 1. Unfortunately, there is no closed-form solution to s�
o(1). Our approach therefore

entails approximating s�
o(1) at the �rst order.

As we show in the following, the approximation relies on two versions of the Her�ndahl-

Hirschman index (HHI), namely the HHI of all �rms selling in the destination market n,

HHIn(� ) �
X

j 2J

�
s�

jn (� )
� 2

;

and the (normalized) HHI of all those exporters in country o that sell in the destination

market n,

HHIon(� ) �
X

j 2E

�
s�

jn (� )

s�
on(� )

� 2

:

We obtain:

Proposition 2. At the �rst order, in the neighborhood of� = 0 (monopolistic competition

conduct), the logged joint market share in destinationn of the �rms from export country o is

given by

log s�
on(� ) = log s�

on(0) +
� � 1

1 + �

h
HHIn(� )� s�

on(� ) HHIon(� )
i
� + o(� )ion



where the second line follows from the approximation in equation (11).

4.1 Estimation Challenges for Sector-level Gravity

In order to consistently estimate gravity equations at the sector-level, we need to correct for

selection of high-quality, low-cost �rms into high-trade-cost destinations. For estimating �rm-

level gravity, we followed Bas, Mayer, and Thoenig (2017) in focusing on the top 3 exporters

from the origin country. This is, of course, not possible when using sector-level data. Here,

we instead adapt the methodology developed by Helpman, Melitz, and Rubinstein (2008)

(from now on HMR) for gravity estimation with heterogeneous �rms and constant markups

to oligopoly. To avoid multiplicity of equilibria, we assume that, at the entry stage, �rms

behave as under monopolistic competition|and thus take the aggregate price index as given.

Under this hypothesis, �rm i from origin o enters market n as long as

� in =
r in

�
� f on

where

r in =

�
� in

1� �

� 1� �
1+ �

'
� � 1

1+ �
i

�
P � � 1

n � nEn
� 1+ 

1+ �

and ' i � a
1+ 
�[(�)]TJ/F47 5.9776 Tf a47 .9501



Then, we obtain the empirical speci�cation for the extensive-margin decision with sector-level

export data as the following Probit model:

� on = �(� o + � n + �X on);

where � o is an o 795dc-3158sg9xeddc-315e8sg3secdc-345(ad+)]TJ/F20 11.9552 Tf 42.3191 0 Td [(�)]TJ/F48 7.9701 Tf 5.112 -1.793 Td [on



We can thus consistently estimate the intensive-margin trade elasticity � 1� �
1+ � .

5 Empirical Implementation

In this section, we show how to implement our methods for �rm- and sector-level gravity

estimations empirically. We �rst discuss our datasets. We then present basic descriptive

statistics on our data and the GMM estimates for � and  . Finally, we run �rm and sector-

level regressions with and without oligopoly correction terms and investigate if and under

which circumstances ignoring oligopolistic behavior can lead to quantitatively important

coe�cient bias.

5.1 Data Sources

As discussed, we use annual �rm-level export data for French and Chinese exporters provided

by the two countries’ customs authorities for the years 2000-2010. In each dataset, we observe

all the products and destinations to which a �rm exports, as well as the quantity and value of

the underlying ow. Both datasets record export data at the 8-digit level but we aggregate

this information up to the 6-digit level of the Harmonised System (HS) which is the lowest

level at which the two national classi�cations are comparable with each other. Because we

observe both values and quantities, we can compute unit values which are a commonly used

proxy for prices in the trade literature.

A �nal challenge for our �rm-level analysis is to obtain information on market shares at a

level of disaggregation that is su�cient to capture meaningful strategic interaction between

�rms. To our knowledge, the only suitable database here is Eurostat’s PRODCOM database



using PRODCOM is that absorption data is only available for approximately thirty European

countries. After combining our data sources, we end up with information on export values

and quantities as well as market shares for 32 European destination markets, approximately

1,800 products and 250,000 exporters for the period 2000-2010.15

For our sector-level gravity regressions, we require product-level data on the value of bilat-

eral exports, absorption data for the computation of market shares and exporter-destination-

product-speci�c HHIs. To make the estimation sample consistent with our �rm-level regres-

sions, we aggregate our �rm-level data at the 6-digit HS level and use the �rm level data to

compute exporter HHIs.16 Finally, we source information on bilateral distance from CEPII.

5.2 Descriptive Statistics



�rm enjoys a market share of almost 30%. In the third column we show the market shares

for the sample of of the top 3 exporters (i.e., the largest three French and Chinese �rms in

terms of total export values for a given 6-digit product and year). The mean market share

in this sample is around 3.9% and at the 95th percentile it equals around 18%. In the �nal



Table 2: Summary Statistics for Sector-Level Market Shares and Exporter HHIs

Exporter Destination Markup
Her�ndahl Market Share Correction Term

Mean 0.55 9% 0.18
5th pctile 0.08 0.01% 0.0004
10th pctile 0.13 0.06% 0.001
Median 0.50 2% 0.03
90th pctile 1 24% 0.41
95th pctile 1 42% 0.82
Note: data for 6-digit HS sectors. Sample 2000-2010. Markup correction term
computed for � = 5,  = 0.

numbers are very similar to estimates at comparable levels of aggregation estimated in the

literature (e.g., Broda and Weinstein, 2006).

Table 3: Price Elasticities and Returns-to-Scale Estimates { Cournot Competition

� 
Mean 5.39 0.34
25th Percentile 2.22 0.03
Median 3.74 0.10
75th Percentile 7.50 0.30
Min 1.01 -0.13
Max 26.07 4.46
Standard Deviation 4.07 0.69
HS 2-digit products 78 78
Note: Table shows descriptive statistics for estimates of � and  . Estimates
computed using 6-digit HS �rm-level information but constrained to be identi-
cal within 2-digit HS products.

5.3 Firm-Level Gravity Estimation Results

We now turn to the estimation of our �rm-level gravity equations with and without correction

for oligopoly bias. In all �rm-level regressions, we consider the top-3 exporters of any given

6-digit product as potential exporters of that product to any given destination and �ll in

the zero export ows if they do not export the product to a destination. As a �rst step,

we pool across all �rms in our data and estimate equations 6 and 7 via PPML using a full

set of �rm-product-year and destination-product-year �xed e�ects. We aim at identifying

the intensive-margin trade elasticity given by � 1� �





Table 6: Firm-Level Gravity Estimates, � = 5:39 and  = 0:34.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.201*** -0.874*** -0.248*** -0.231***

(0.118) (0.0210) (0.0142) (0.0136)

�̂ distance 0.792 0.577 0.160 0.149
Observations 11,955,786 11,955,786 708,392 708,386
R-squared 0.05 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Cournot
model with mean of estimated � and  . Standard errors in brackets, clustered at the
destination-year level.

reduce their markups in markets where they face higher variable trade costs and thus have

lower market shares. As a consequence, �rm-level export values decrease by less than they

would have decreased under constant markups. The point estimate on distance corresponds

to (� � 1)�̂ distance , where �̂ distance is the fundamental trade cost elasticity of distance. Given

values of � equal to 5 and  equal to zero, the implied values for this coe�cient are 0.354 in

column (1) and 0.199 in column (2), implying a downward bias in coe�cient magnitude of

around 44 percent. Note that while distance is not a policy variable, a very similar attenuation

bias would arise for any iceberg-type variable, such as ad-valorem tari�s or transport costs.

In columns (3) and (4) we report estimates for the log-linear versions of equations (7) and







the �rm level (around 10%).

Table 8: Sector-level Gravity Estimates without Controlling for Selection

Regressor PPML w/o corr PPML w/ corr OLS w/o corr OLS w/ corr
log distance -0.263 -0.186 -1.128*** -1.260***

(0.168) (0.147) (0.195) (0.216)
Observations 107,064 107,064 66,563 66,563
R-squared 0.314 0.285
Product-origin FE YES YES YES YES
Product-dest. FE YES YES YES YES
Note: Sector-level data. Cournot model with � = 5 and  = 0. Standard errors
clustered at destination level

We now apply the HMR methodology in order to correct for selection into exporting in

addition to the markup bias and to obtain correct estimates of the intensive-margin trade

elasticity. To apply the HMR method, we �rst estimate the propensity to export (extensive

margin) using a Probit estimator. We include 2-digit-product-origin and 2-digit-product-

destination �xed e�ects.19 To proxy for �xed market entry costs between origin o and desti-

nation n, we also follow HMR: we add dummies for the business startup time and the startup

cost being above the sample median for both the origin and the destination country. By as-

sumption, these variables only impact on the �xed export cost but not on the iceberg-type

trade costs and thus exclusively a�ect �rms’ entry decision but not their quantity choice con-



Table 9: Sector-level Gravity Estimates { Export Propensity

Regressor Export > 0
log distance -0.420*
high startup cost -1.340***
long startup time -2.102***
Observations 107,064
Product-origin FE YES
Product-dest. FE YES

Note: Sector-level data. HMR �rst-stage Probit regression of propensity to
exporting. Standard errors clustered at destination level in parentheses

Here, eronz corresponds to the markup-corrected export revenue of origin country o in desti-

nation n in sector z. X on is log distance and Ẑonz is the predicted export-pro�t-to-�xed-cost

ratio for the highest-type �rm. We include a second or third-order polynomial in this vari-

able to proxy for the exporting �rms’ type mix in each origin-destination-sector combination.

Finally, � onz is the inverse Mills ratio, which controls for unobserved variable trade costs. As

usually, we �rst report results for this regression when the correction term is computed with

� = 5 and  = 0 (CRS) in Table 10. In columns (1) and (2), we report results without

and with the markup correction term, but only including the inverse Mills ratio (columns

labeled Heck), in columns (3)-(6) we instead implement the full HMR procedure. Columns

(3) and (4) include a quadratic function of Ẑonz , while columns (5)-(6) include a third-order

polynomial. In all three cases, the coe�cient on distance in the speci�cation including the

markup correction term is signi�cantly larger in magnitude compared to the one without

markup correction. In our preferred speci�cations (columns (4)-(6)), the coe�cient on log

distance is around -1.284, compared to -1.15 without correction, corresponding to around

10% downward bias in absolute magnitude without correction. The corresponding point

estimates of the fundamental trade cost elasticity to distance are 0.32 vs. 0.29. Finally,

note that the inverse Mills ratio and the polynomial terms in Ẑonz have the expected signs in

columns (4)-(6) and are mostly signi�cant. Lower unobserved trade barriers (a higher inverse

Mills ratio) and higher average types both increase the value of sectoral exports to a given

destination.

In Table 11, we repeat the same speci�cations, using the mean estimated � of 5.39 and

 = 0 to compute the markup correction term. Not surprisingly, our results are hardly

a�ected by this modi�cation. Finally, in Table 12, we use both the mean estimates of �

and  to correct for oligopolistic markups. While the point estimates on log distance hardly

change, the estimated fundamental distance coe�cient does become signi�cantly larger in this
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Table 11: Sector-level Gravity Estimates { intensive margin, � = 5:39,  = 0
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.341*** -1.151*** -1.297*** -1.150*** -1.297***

(0.198) (0.222) (0.190) (0.211) (0.193) (0.214)
inv mills -0.121 -0.131 0.678*** 0.810*** 0.639** 0.822**

(0.165) (0.184) (0.169) (0.194) (0.309) (0.348)

log Ẑ 0.907*** 1.083*** 0.736 1.132
(0.265) (0.295) (1.305) (1.405)

log Ẑ 2 -0.103* -0.127** -0.0297 -0.148
(0.0565) (0.0626) (0.534) (0.570)

log Ẑ 3 -0.0102 0.00293
(0.0693) (0.0736)

�̂ distance 0.277 0.313 0.268 0.302 0.268 0.302
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.272 0.304 0.274 0.304 0.274
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Cournot model with mean of estimated � and  = 0. Standard errors
clustered at destination level in parentheses.

Table 12: Sector-level Gravity Estimates { intensive margin, � = 5:39,  = 0:34
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.243*** -1.151*** -1.202*** -1.150*** -1.202***

(0.198) (0.206) (0.190) (0.197) (0.193) (0.200)
inv mills -0.121 -0.124 0.678*** 0.725*** 0.639** 0.703**

(0.165) (0.171) (0.169) (0.178) (0.309) (0.322)

log Ẑ 0.907*** 0.969*** 0.736 0.876
(0.265) (0.275) (1.305) (1.338)

log Ẑ 2 -0.103* -0.112* -0.0297 -0.0714
(0.0565) (0.0586) (0.534) (0.546) )

log Ẑ 3 -0.0102 -0.00556
(0.0693) (0.0707)

�̂ distance 0.767 0.802 0.743 0.776 0.743 0.776
Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.292 0.304 0.294 0.304 0.294
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES



ily biased.

Table 13: Sector-level estimates by 2-digit product.

Median est coe�cient � = 5;  = 0 � est,  = 0 �;  est
log distance w/ corr -1.040 -1.023 -0.930
log distance w/o corr -0.880 -0.873 -0.872

�̂ distance w/ corr 0.260 0.294 0.622

�̂ distance w/o corr 0.220 0.278 0.585
abs. pct. bias (10th pctile) 4% 1.4% 0.01%
abs. pct. bias (median) 13.7 % 11.2% % 5.2
abs. pct. bias (90th pctile) 39.9% 46.4% 19.4%
Note: Sector-level data. Median estimated coe�cients by industry. Cournot
model.

6 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations to evaluate the merits of our oligopoly

correction terms. To this end, we develop and calibrate a model in which �rms �rst self-

select into export destinations and then compete in quantities. Using the calibrated model,

we generate a Monte Carlo data-set in which the estimation challenges (due to oligopolistic

behavior and selection into export markets) discussed in Sections 2.1 and 4.1 are present.

We then apply our �rm- and industry-level estimators to that data-set and con�rm that our

oligopoly correction terms signi�cantly improve the accuracy of our estimates.

6.1 Setup

The oligopoly model is as described in Section 2, with � = 1 (Bertrand-Nash conduct). In

the following, we focus on a sector z and drop the sector index to ease notation. We now put

more structure on the distribution of cost and quality shocks, as well as on how �rms make



� are parameters. Finally, we set ain (the quality of product i in market n) equal to 1 for

every i and n.20

A country-o �rm that wants to sell in country n 6= o must pay a �xed cost f on � F �
� o

on � � u
on, where F is a parameter and � o

od and � u
od



GDP in the data. We assume that, for every country o, jJoj, the number of �rms based in

o, is proportional to that country’s GDP, with the proportionality coe�cient chosen so that

the total number of �rms is 220. The elasticity of substitution � and the returns-to-scale



of the entry game using the behavioral assumption mentioned in the previous subsection, and

the oligopoly equilibrium using a variant of Nocke and Schutz (2018b)’s nested �xed-point

algorithm. Having done that for all ten runs, we compute arithmetic averages (or medians)

across runs to obtain Monte Carlo approximations to our theoretical moments.

Our calibration algorithm converges to F = 1



Table 14: Monte Carlo: Firm-Level Results
(1) (2) (3) (4) (5) (6) (7) (8)

OLS OLS PPML PPML OLS OLS PPML PPML
all all all all top3 exp top3 exp top3 exp top3 exp

VARIABLES no corr corr no corr corr no corr corr no corr corr
ldist -0.576*** -0.588*** -0.966*** -1.446*** -0.624** -0.645** -1.064*** -1.632***

(0.0777) (0.0781) (0.0801) (0.291) (0.261) (0.276) (0.146) (0.451)

Observations 116,483 116,483 427,505 427,505 8,981 8,981 21,405 21,405
R-squared 0.326 0.322 0.455 0.446
Firm-year FE YES YES YES YES YES YES YES YES
Destination-year FE YES YES YES YES YES YES YES YES

Note: True distance coe�cient is �1:4.

that explicitly account for selection (columns Heckman and HMR), when combined with our

correction term, deliver estimates that are very close to the true distance coe�cient (�1:4).

Table 15: Monte Carlo: Industry-Level Results
(1) (2) (3) (4) (5) (6) (7) (8)

OLS OLS PPML PPML Heckman Heckman HMR HMR
all all all all all all all all

VARIABLES no corr corr no corr corr no corr corr no corr corr

ldist -1.165*** -1.300*** -0.966*** -1.192*** -1.202*** -1.341*** -1.233*** -1.378***
(0.0632) (0.0720) (0.0801) (0.123) (0.0748) (0.0864) (0.0754) (0.0852)

log Ẑ -15.96 -23.24
(25.41) (29.61)

(log Ẑ )2 11.21 15.64
(15.27) (18.00)

(log Ẑ )3 -2.890 -3.869
(3.175) (3.785)

inv. Mills 0.770 0.845 -1.006 -2.068
(0.758) (0.878) (4.095) (4.636)

Observations 7,628 7,628 8,432 8,432 7,628 7,628 7,628 7,628
R-squared 0.703 0.668 0.703 0.668 0.703 0.668
Firm-year FE YES YES YES YES YES YES YES YES
Destination-year FE YES YES YES YES YES YES YES YES

Note: True distance coe�cient is �1:4.

7 Conclusions

In this paper, we have evaluated the consequences of oligopolistic behavior for the estimation

of gravity equations for trade ows. We showed that with oligopolistic competition, �rm-



multiplied by an exporter-destination-speci�c Her�ndahl-Hirschman index. We showed how

to construct appropriate correction terms for both cases that can be used to avoid problems

of omitted variable bias. Using combined French and Chinese �rm-level export data as well

as a sample of product-level imports by European countries, we showed that correcting for

oligopolistic behavior can lead to substantial changes in the coe�cients on standard gravity

regressors.

Appendix

A Proofs

A.1 Proof of Proposition 1

Proof. To complete the proof of the proposition, we need to: (a) Show that the function S

is well de�ned, and study its monotonicity properties as well as its limits; (b) show that the

equilibrium condition (10) has a unique solution; (c) show that, at � = 1, the �rst-order



(c) Rewriting equation (2) with � = 1 and rearranging terms yields:

@�i
@qi

= q
i

2

4 � � 1

�
�E

a
1
�
i q

� 1+ �
�

i
P

j 2J a
1
�
j q

� � 1
�

j

0

@1� a
1
�
i q

� � 1
�

i
P

j 2J a
1
�
j q

� � 1
�

j

1

A � ci � i

3

5 ;

where we have dropped the destination subscript for ease of notation. As 1 + � > 0, the

term inside square brackets is strictly decreasing in qi . Moreover, that terms tends to +1
and �� i ci as qi tends to 0 and +1, respectively. It follows that qi maximizes �rm i ’s pro�t

if and only if �rm i ’s �rst-order condition holds at qi .

A.2 Proof of Proposition 2

Proof. To apply Taylor’s theorem, we require the value of s�0
e (0). This requires computing

the partial derivatives of S(�; �) at � = 0 as well as H �0(0). Di�erentiating equation (9) with

respect to si , � , and t i � Ti =H at � = 0 yields

�si d� =
1 + �
� � 1

dsi
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We can now compute s�0
i (0):
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Applying Taylor’s theorem at the �rst order in the neighborhood of � = 0 yields:

log s�
e(� ) = log s�
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= log s�
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where the last line follows from the fact that HHI(� )�HHI(0) and s�
e(� ) HHIe(� )�s�

e(0) HHIe(0)

are at most �rst order.

B Price Competition

B.1 Theoretical Results

Under price competition, the pro�t of �rm i when selling in destination n is:

� in = pin ain p� �
in P � � 1

n � nEn � Cin
�
ain p� �

in P � � 1
n � nEn

�
;

where we have dropped the sector index z for ease of notation.

The degree of strategic interactions between �rms continues to be governed by the conduct
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parameter � 2 [0; 1]: When �rm i increases its price by an in�nitesimal amount, it perceives

the induced e�ect on Pn to be equal to �@Pn=@pin . It is still the case that monopolistic

competition arises when � = 0, whereas Bertrand competition arises when � = 1. The

�rst-order condition of pro�t maximization of �rm i in destination n is given by

0 =
@�in
@pin

= ain p� �
in P � � 1

n � nEn + (pin � C0
in (qin ))

�
� �

pin
+

� � 1

Pn
�
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�
� nEnain p� �

in P � � 1
n

= qin

�
1� pin � C0

in (qin )

pin
[� � � (� � 1)sin ]

�
; (15)

where

sin �
ain p1� �

inP
j 2J ajn p1� �

jn

(16)

continues to be the market share of �rm i in destination n.

Equation (15) pins down �rm i ’s optimal markup under price competition:

� in =
1

� � � (� � 1) sin
;

where � in =
pin � C0

in (qin )
pin

is �rm i ’s Lerner index. Apart from this change in the expression for

the �rm’s optimal markup, all other �rm-level results go through as before.

We now turn our attention to the sector-level results. As in Section 4, we begin by

employing an aggregative games approach to analyze the equilibrium in a given market,

dropping the market subscript n to ease notation. The market-level aggregator H is now

de�ned as

H � P1� � =
X

j 2J

aj p1� �
j

and �rm i ’s type as

Ti � ai (�E )
 (1 � � )

1+  (ci � i )
1� �
1+  :

Plugging these de�nitions into equation (15), making use of equation (16), and rearrang-

ing, we obtain:  

1� s
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i

�
H
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(� � � (� � 1)si ) = 1: (17)

Note that the left-hand side of equation (17) is strictly decreasing on the interval
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and tends to � and 0 as si tends to the lower and upper endpoints of that interval, respectively.

Equation (17) therefore has a unique solution on the above interval, denoted S(t i ; � ) with

t i � Ti =H. (Solutions outside that interval necessarily give rise to strictly negative markups

and are thus suboptimal.)

It is easily checked that S is strictly increasing in its �rst argument, strictly decreasing

in its second argument, and tends to 0 and 1=� as t i tends to 0 and 1, respectively.

As before, the equilibrium condition is that market shares must add up to unity:

X

j 2J

S
�

Ti

H
; �

�
= 1: (18)

The properties of the function S, described above, imply that this equation has a unique

solution, H � (� ).

To summarize:

Proposition A. In each destination market, and for any conduct parameter� , there exists

a unique equilibrium in prices. The equilibrium aggregator levelH � (� ) is the unique solu-

tion to equation (18). Each �rm i 's equilibrium market share iss�
i (� ) = S(Ti =H � (� ); � ),

whereS(Ti =H � (� ); � ) is the unique solution to equation(17). From equation (16), �rm i 's

equilibrium price is given by

p�
i (� ) =

�
s�

i (� )H � (� )

ai

� 1
1� �

:

Proof. All that is left to do is check that �rst-order conditions are su�cient for optimality

when � = 1. Combining equations (15) and (17) yields:

@�i
@pi

= qi [1� � (pi )� (pi )] ;

where

� (pi ) � 1�

 
ai p1� �

iP
j aj p1� �

j

! 1+ �
� � 1

 P
j aj p1� �

j

Ti

! 1+ 
� � 1

and � (pi ) � � � (� � 1)
ai p1� �

iP
j aj p1� �

j

:

As 1 + � > 0, the functions � and � are strictly increasing. Moreover, � (pi ) > 0 for every

pi , whereas there exists epi > 0 such that � (pi ) > 0 if pi > epi and � (pi ) < 0 if pi < epi .

Hence, � i is strictly increasing on the interval (0; epi ), and �rm i ’s �rst-order condition holds

nowhere on that interval. The fact that limpi !1 � (pi ) = 1 and limpi !1 � (pi ) = � and the
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monotonicity properties of � and � on (epi ;1) imply the existence of a unique bpi at which

�rm i ’s �rst-order condition holds. Moreover, � i is strictly increasing on (epi ; bpi ) and strictly

decreasing on (bpi ;1). First-order conditions are therefore su�cient for optimality.

Having characterized the equilibrium in a given destination, we now adapt the �rst-order

approach to sector-level gravity to the case of price competition. As in Section 4, let E ( J
denote the subset of exporters in country e that sell in the destination market n. The

combined market share of those exporters in market n is given by

s�
e(� ) �

X

i 2E

s�
i (� ):

As before, we approximate s�
e(1) at the �rst order. The de�nitions of HHI and HHIe are as

in Section 4.

We obtain:

Proposition B. At the �rst order, in the neighborhood of � = 0, the logged joint market

share in destinationn of the �rms from export country e is given by

log s�
e(� ) = log s�

e(0) +
� � 1

� (1 + � )
[HHI(� )� s�

e(� ) HHIe(� )] � + o(� ):

Proof. The proof follows the same developments as the proof of Proposition 2. We begin by

computing the partial derivatives of S at � = 0. It is useful to rewrite �rst equation (17) as

si = t
1+ 

1+ �
i

�
1� 1

� � � (� � 1)si

� � � 1
1+ �

: (19)

Taking the logarithm and totally di�erentiating the equation at � = 0 yields:

dsi

si
=

1 + 
1 + �

dti

t i
� � � 1

� (1 + � )
si d�:

The partial derivatives of S are thus given by

=
1 +





Table 16: Price Elasticities and Returns-to-Scale Estimates { Price Competition
� 

Mean 4.96 0.31
25th Percentile 2.06 0.02
Median 3.27 0.10
75th Percentile 5.22 0.28
Min 1.01 -0.11
Max 26.03 4.5
Standard Deviation 4.89 0.67
HS 2-digit products 78 78
Note: Table shows descriptive statistics for estimates of� and  . Estimates
computed using 6-digit HS �rm-level information but constrained to be identi-
cal within 2-digit HS products.

Tables 17-19 show results for the pooled �rm-level regressions. In all speci�cations, the

point estimates on the distance coe�cient are much larger in absolute magnitude when

correcting for oligopoly bias. The absolute value of the distance coe�cient is slightly smaller

than with Cournot competition.

Tables 20-22 show results for the pooled sector-level regressions. Again, the distance co-

e�cient becomes larger in absolute magnitude when including the markup correction term.

Like in the case of Cournot competition, the absolute di�erences in coe�cient magnitudes

between the estimates with and without correction are smaller than with the �rm-level esti-

mates.

Table 17: Firm-level Gravity Estimates { Bertrand competition, � = 5,  = 0.
Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.418*** -0.874*** -0.246*** -0.232***

(0.190) (0.021 ) (0.014) (0.014)
�̂ distance 0.355 0.219 -
Observations 11,955,786 11,955,786 708,386 708,386
R-squared 0.05 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES
Note: Firm-level data, pooled across sectors. Results for top 3 exporters. Bertrand
model with � = 5 and  = 0. Standard errors in brackets, clustered at the destination-
year level.
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Table 18: Firm-level Gravity Estimates { Bertrand competition, � = 4:96,  = 0.

Regressor PPML w/ corr PPML w/o corr OLS w/ corr OLS w/o corr
log distance -1.415*** -0.874*** -0.246*** -0.232***

(0.189) (0.0210 ) (0.013) (0.013)

�̂ distance 0.357 0.221

Observations 11,955,786 11,955,786 708,392 708,386
R-squared 0.06 0.06
Firm-year FE YES YES YES YES
Product-dest.-year FE YES YES YES YES



Table 21: Sector-level Gravity Estimates { Bertrand Competition, � = 4:96,  = 0
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.217*** -1.151*** -1.177*** -1.150*** -1.177***

(0.198) (0.202) (0.190) (0.194) (0.193) (0.197)
inv mills -0.121 -0.123 0.678*** 0.702*** 0.639** 0.672**

(0.165) (0.168) (0.169) (0.173) (0.309) (0.315)

log Ẑ 0.907*** 0.939*** 0.736 0.808
(0.265) (0.270) (1.305) (1.322)

log Ẑ 2 -0.103* -0.108* -0.0297 -0.0512
(0.0565) (0.0575) (0.534) (0.540)

log Ẑ 3 -0.0102 -0.00780
(0.0693) (0.0700)

�̂ distance

Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.297 0.304 0.299 0.304 0.299
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Bertrand model with mean of estimated � and  = 0. Standard errors
clustered at destination level in parentheses.

Table 22: Sector-level Gravity Estimates { Bertrand competition, � = 4:96,  = 0:31
Regressor Heck w/o Heck w/ HMR2 w/o HMR2 w/ HMR3 w/o HMR3 w/
log distance -1.189*** -1.200*** -1.151*** -1.161*** -1.150*** -1.161***

(0.198) (0.199) (0.190) (0.192) (0.193) (0.194)
inv mills -0.121 -0.122 0.678*** 0.687*** 0.639** 0.652**

(0.165) (0.166) (0.169) (0.171) (0.309) (0.311)

log Ẑ 0.907*** 0.919*** 0.736 0.765
(0.265) (0.267) (1.305) (1.311)

log Ẑ 2 -0.103* -0.105* -0.0297 -0.0382
(0.0565) (0.0569) (0.534) (0.536) )

log Ẑ 3 -0.0102 -0.00925
(0.0693) (0.0696)

�̂ distance

Observations 60,662 60,662 60,662 60,662 60,662 60,662
R-squared 0.302 0.300 0.304 0.302 0.304 0.302
Origin-product FE YES YES YES YES YES YES
Destination-product FE YES YES YES YES YES YES
Note: Sector-level data. Bertrand model with mean of of estimated � and  . Standard errors
clustered at destination level in parentheses.
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C Data Appendix

Table 23: List of export destinations included in the �rm-level and product-level data

Austria Latvia
Belgium Lithuania
Bulgaria Luxembourg
Croatia Malta
Cyprus Netherlands
Czech Rep. Norway
Denmark Poland
Estonia Portugal
Finland Romania
France Serbia
Germany Slovakia
Greece Slovenia
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